Advertisement

Entangled wavepackets in the vacuum

  • Joris KattemölleEmail author
  • Ben Freivogel
Open Access
Regular Article - Theoretical Physics

Abstract

Motivated by the black hole firewall problem, we find highly entangled pairs of spatially localized modes in quantum field theory. We demonstrate that appropriately chosen wavepackets localized outside the horizon are nearly purified by ‘mirror’ modes behind the horizon. In addition, we calculate the entanglement entropy of a single localized wavepacket in the Minkowski vacuum. In all cases we study, the quantum state of the system becomes pure in the limit that the wavepackets delocalize; we quantify the trade-off between localization and purity.

Keywords

Black Holes Effective Field Theories Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Audretsch and R. Müller, Localized discussion of stimulated processes for Rindler observers and accelerated detectors, Phys. Rev. D 49 (1994) 4056 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    J. Kattemölle, Entanglement in the vacuum and the firewall paradox, MSc Thesis, Universiteit van Amsterdam, Amsterdam the Netherlands (2016), https://esc.fnwi.uva.nl/thesis/centraal/files/f1210881169.pdf.
  4. [4]
    N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1984).Google Scholar
  5. [5]
    S. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Pearson Education, London U.K. (2013).Google Scholar
  6. [6]
    A. Ferraro, S. Olivares and M. Paris, Gaussian States in Quantum Information, Napoli series on physics and astrophysics, Bibliopolis, Naples Italy (2005).Google Scholar
  7. [7]
    G. Adesso, S. Ragy and A.R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Syst. Inf. Dyn. 21 (2014) 1440001 [arXiv:1401.4679].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T.F. Demarie, Pedagogical introduction to the entropy of entanglement for Gaussian states, arXiv:1209.2748 [INSPIRE].
  9. [9]
    X.-B. Wang, T. Hiroshima, A. Tomita and M. Hayashi, Quantum information with gaussian states, Phys. Rept. B 448 (2007) 1 [arXiv:0801.4604] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Takagi, Vacuum noise and stress induced by uniform accelerator: Hawking-Unruh effect in Rindler manifold of arbitrary dimensions, Prog. Theor. Phys. Suppl. 88 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    L. Susskind and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe, World Scientific, New York U.S.A. (2005).zbMATHGoogle Scholar
  13. [13]
    D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
  15. [15]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
  16. [16]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    W. functions site, Modified bessel function of the second kind, http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/06/01/04/01/01/0003/.
  18. [18]
    G. Arfken and H. Weber, Mathematical methods for physicists, Elsevier Press, Amsterdam the Netherlands (2008).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.QuSoft, CWIAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.GRAPPAUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations