Advertisement

O(d+1, d+1) enhanced double field theory

  • Olaf Hohm
  • Edvard T. MusaevEmail author
  • Henning Samtleben
Open Access
Regular Article - Theoretical Physics

Abstract

Double field theory yields a formulation of the low-energy effective action of bosonic string theory and half-maximal supergravities that is covariant under the T-duality group O(d, d) emerging on a torus T d . Upon reduction to three spacetime dimensions and dualisation of vector fields into scalars, the symmetry group is enhanced to O(d+1, d+1). We construct an enhanced double field theory with internal coordinates in the adjoint representation of O(d + 1, d + 1). Its section constraints admit two inequivalent solutions, encoding in particular the embedding of D = 6 chiral and non-chiral theories, respectively. As an application we define consistent generalized Scherk-Schwarz reductions using a novel notion of generalized parallelization. This allows us to prove the consistency of the truncations of D = 6, \( \mathcal{N}=\left(1,1\right) \) and D = 6, \( \mathcal{N}=\left(2,0\right) \) supergravity on \( {\mathrm{AdS}}_3\times {\mathbb{S}}^3 \).

Keywords

Bosonic Strings M-Theory String Duality String Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II Strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W. Siegel, Manifest duality in low-energy superstrings, in Proceedings of Strings ’93, Berkeley U.S.A. (1993), M. Halpern, G. Rivlis and A. Sevrin eds., World Scientific, New York U.S.A. (1993), pg. 353 [hep-th/9308133] [INSPIRE].
  8. [8]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    F. Ciceri, G. Dibitetto, J.J. Fernandez-Melgarejo, A. Guarino and G. Inverso, Double field theory at SL(2) angles, JHEP 05 (2017) 028 [arXiv:1612.05230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Sen, Strong-weak coupling duality in three-dimensional string theory, Nucl. Phys. B 434 (1995) 179 [hep-th/9408083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Cremmer, B. Julia, H. Lü and C.N. Pope, Higher dimensional origin of D = 3 coset symmetries, hep-th/9909099 [INSPIRE].
  13. [13]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  14. [14]
    O. Hohm and H. Samtleben, U-duality covariant gravity, JHEP 09 (2013) 080 [arXiv:1307.0509] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev. D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].ADSGoogle Scholar
  16. [16]
    X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, JHEP 08 (2017) 144 [arXiv:1310.4196] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  20. [20]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  21. [21]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  23. [23]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Baguet and H. Samtleben, E 8(8) exceptional field theory: geometry, fermions and supersymmetry, JHEP 09 (2016) 168 [arXiv:1607.03119] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Cederwall and J.A. Rosabal, E 8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  32. [32]
    D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP 05 (2013) 161 [arXiv:1301.0467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Inverso, Generalised Scherk-Schwarz reductions from gauged supergravity, arXiv:1708.02589 [INSPIRE].
  37. [37]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Le Diffon and H. Samtleben, Supergravities without an action: Gauging the trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    H. Nicolai and H. Samtleben, Chern-Simons versus Yang-Mills gaugings in three-dimensions, Nucl. Phys. B 668 (2003) 167 [hep-th/0303213] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Cvetič, H. Lü and C.N. Pope, Consistent Kaluza-Klein sphere reductions, Phys. Rev. D 62 (2000) 064028 [hep-th/0003286] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    E. Malek and H. Samtleben, Dualising consistent IIA/IIB truncations, JHEP 12 (2015) 029 [arXiv:1510.03433] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    N.S. Deger, H. Samtleben, O. Sarioglu and D. Van den Bleeken, A supersymmetric reduction on the three-sphere, Nucl. Phys. B 890 (2014) 350 [arXiv:1410.7168] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    H. Nicolai and H. Samtleben, Kaluza-Klein supergravity on AdS 3 × S 3, JHEP 09 (2003) 036 [hep-th/0306202] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3 × S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2 − D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E.A. Bergshoeff, O. Hohm and F. Riccioni, Exotic dual of type II double field theory, Phys. Lett. B 767 (2017) 374 [arXiv:1612.02691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    E. Malek, 7-dimensional \( \mathcal{N}=2 \) consistent truncations using SL(5) exceptional field theory, JHEP 06 (2017) 026 [arXiv:1612.01692] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    E. Malek, Half-maximal supersymmetry from exceptional field theory, arXiv:1707.00714 [INSPIRE].
  52. [52]
    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    K. Lee, C. Strickland-Constable and D. Waldram, New gaugings and non-geometry, arXiv:1506.03457 [INSPIRE].
  54. [54]
    O. Hohm and H. Samtleben, Effective actions for massive Kaluza-Klein states on AdS 3 × S 3 × S 3, JHEP 05 (2005) 027 [hep-th/0503088] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS 3 × S 3 × S 3 × S 1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, Protected string spectrum in AdS 3 /CFT 2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C.M. Hull, Symmetries and compactifications of (4, 0) conformal gravity, JHEP 12 (2000) 007 [hep-th/0011215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  3. 3.General Relativity Department, Institute of PhysicsKazan Federal UniversityKazanRussia
  4. 4.Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de PhysiqueLyonFrance

Personalised recommendations