Advertisement

Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments

  • Bradley J. Kavanagh
  • Farinaldo S. Queiroz
  • Werner Rodejohann
  • Carlos E. YagunaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

It was recently pointed out that direct detection signals from at least three different targets may be used to determine whether the Dark Matter (DM) particle is different from its antiparticle. In this work, we examine in detail the feasibility of this test under different conditions, motivated by proposals for future detectors. Specifically, we perform likelihood fits to mock data under the hypotheses that the DM particle is identical to or different from its antiparticle, and determine the significance with which the former can be rejected in favor of the latter. In our analysis, we consider 3 different values of the DM mass (50 GeV, 300 GeV, 1 TeV) and 4 different experimental ensembles, each consisting of at least 3 different targets — Xe and Ar plus one among the following: Si, Ge, CaWO4, or Ge/CaWO4. For each of these experimental ensembles and each DM mass, the expected discrimination significance is calculated as a function of the DM-nucleon couplings. In the best case scenario, the discrimination significance can exceed \( \mathcal{O}\left(3\sigma \right) \) for three of the four ensembles considered, reaching \( \mathcal{O}\left(5\sigma \right) \) at special values of the DM-nucleon couplings. For the ensemble including Si, \( \mathcal{O}\left(5\sigma \right) \) significance can be achieved for a range of DM masses and over a much wider range of DM-nucleon couplings, highlighting the need for a variety of experimental targets in order to determine the DM properties. These results show that future direct detection signals could be used to exclude, at a statistically significant level, a Majorana or a real DM particle, giving a critical clue about the identity of the Dark Matter.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Silk et al., Particle dark matter: observations, models and searches, G. Bertone ed., Cambridge Univ. Press, Cambridge U.K., (2010).Google Scholar
  2. [2]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.K. Drukier, K. Freese and D.N. Spergel, Detecting cold dark matter candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].
  4. [4]
    CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE].
  5. [5]
    SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  6. [6]
    DarkSide collaboration, P. Agnes et al., Results from the first use of low radioactivity argon in a dark matter search, Phys. Rev. D 93 (2016) 081101 [Addendum ibid. D 95 (2017) 069901] [arXiv:1510.00702] [INSPIRE].
  7. [7]
    PandaX-II collaboration, A. Tan et al., Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  8. [8]
    EDELWEISS collaboration, L. Hehn et al., Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach, Eur. Phys. J. C 76 (2016) 548 [arXiv:1607.03367] [INSPIRE].
  9. [9]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  10. [10]
    XENON100 collaboration, E. Aprile et al., XENON100 dark matter results from a combination of 477 live days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].
  11. [11]
    PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 C 3 F 8 bubble chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].
  12. [12]
    XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, arXiv:1705.06655 [INSPIRE].
  13. [13]
    P.J. Fox, J. Liu and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D 83 (2011) 103514 [arXiv:1011.1915] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Pato, L. Baudis, G. Bertone, R. Ruiz de Austri, L.E. Strigari and R. Trotta, Complementarity of dark matter direct detection targets, Phys. Rev. D 83 (2011) 083505 [arXiv:1012.3458] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Catena and P. Gondolo, Global fits of the dark matter-nucleon effective interactions, JCAP 09 (2014) 045 [arXiv:1405.2637] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.J. Anderson, P.J. Fox, Y. Kahn and M. McCullough, Halo-independent direct detection analyses without mass assumptions, JCAP 10 (2015) 012 [arXiv:1504.03333] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Roszkowski, E.M. Sessolo, S. Trojanowski and A.J. Williams, Reconstructing WIMP properties through an interplay of signal measurements in direct detection, Fermi-LAT and CTA searches for dark matter, JCAP 08 (2016) 033 [arXiv:1603.06519] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Is the dark matter particle its own antiparticle?, Phys. Rev. D 95 (2017) 095010 [arXiv:1610.06581] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
  20. [20]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Analysis strategies for general spin-independent WIMP-nucleus scattering, Phys. Rev. D 94 (2016) 063505 [arXiv:1605.08043] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912 [INSPIRE].
  24. [24]
    E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  25. [25]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  26. [26]
    J.I. Read, The local dark matter density, J. Phys. G 41 (2014) 063101 [arXiv:1404.1938] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.H.G. Peter, V. Gluscevic, A.M. Green, B.J. Kavanagh and S.K. Lee, WIMP physics with ensembles of direct-detection experiments, Phys. Dark Univ. 5-6 (2014) 45 [arXiv:1310.7039] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    M. Feast and P. Whitelock, Galactic kinematics of cepheids from hipparcos proper motions, Mon. Not. Roy. Astron. Soc. 291 (1997) 683 [astro-ph/9706293] [INSPIRE].
  29. [29]
    J. Bovy et al., The milky way’s circular velocity curve between 4 and 14 kpc from APOGEE data, Astrophys. J. 759 (2012) 131 [arXiv:1209.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. McCabe, The earth’s velocity for direct detection experiments, JCAP 02 (2014) 027 [arXiv:1312.1355] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.C. Smith et al., The RAVE survey: constraining the local galactic escape speed, Mon. Not. Roy. Astron. Soc. 379 (2007) 755 [astro-ph/0611671] [INSPIRE].
  32. [32]
    T. Piffl et al., The RAVE survey: the galactic escape speed and the mass of the milky way, Astron. Astrophys. 562 (2014) A91 [arXiv:1309.4293] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    R.H. Helm, Inelastic and elastic scattering of 187 Mev electrons from selected even-even nuclei, Phys. Rev. 104 (1956) 1466 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
  36. [36]
    LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  37. [37]
    XENON collaboration, G. Plante, The XENONnT project, https://conferences.pa.ucla.edu/dm16/talks/plante.pdf, UCLA, Los Angeles U.S.A., (2016).
  38. [38]
    DEAP collaboration, P.A. Amaudruz et al., DEAP-3600 dark matter search, Nucl. Part. Phys. Proc. 273-275 (2016) 340 [arXiv:1410.7673] [INSPIRE].
  39. [39]
    DEAP collaboration, M. Boulay, Development of a 50-tonne next-generation argon detector at SNOLAB, https://www.snolab.ca/sites/default/files/Boulay 50T.pdf, (2013).
  40. [40]
    G. Angloher et al., EURECA conceptual design report, Phys. Dark Univ. 3 (2014) 41 [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].
  42. [42]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  43. [43]
    NEWS collaboration, A. Aleksandrov et al., NEWS: Nuclear Emulsions for WIMP Search, arXiv:1604.04199 [INSPIRE].
  44. [44]
    SuperCDMS collaboration, R. Agnese et al., Improved WIMP-search reach of the CDMS II germanium data, Phys. Rev. D 92 (2015) 072003 [arXiv:1504.05871] [INSPIRE].
  45. [45]
    B.J. Kavanagh, F.S. Queiroz, W. Rodejohann and C.E. Yaguna, AntiparticleDM computer software, https://github.com/bradkav/AntiparticleDM, (2017) [Zenodo].
  46. [46]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  47. [47]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].
  48. [48]
    F. Giuliani, Are direct search experiments sensitive to all spin-independent WIMP candidates?, Phys. Rev. Lett. 95 (2005) 101301 [hep-ph/0504157] [INSPIRE].
  49. [49]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z , JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter benchmarks for Snowmass 2013, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July-6 August 2013 [arXiv:1307.1758] [INSPIRE].
  52. [52]
    J.L. Feng, J. Kumar and D. Sanford, Xenophobic dark matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Bélanger, A. Goudelis, J.-C. Park and A. Pukhov, Isospin-violating dark matter from a double portal, JCAP 02 (2014) 020 [arXiv:1311.0022] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  54. [54]
    K. Hamaguchi, S.P. Liew, T. Moroi and Y. Yamamoto, Isospin-violating dark matter with colored mediators, JHEP 05 (2014) 086 [arXiv:1403.0324] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    V.M. Lozano, M. Peiró and P. Soler, Isospin violating dark matter in Stückelberg portal scenarios, JHEP 04 (2015) 175 [arXiv:1503.01780] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals, JCAP 10 (2016) 040 [arXiv:1510.07053] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Gao, J. Kumar and D. Marfatia, Isospin-violating dark matter in the sun, Phys. Lett. B 704 (2011) 534 [arXiv:1108.0518] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Kumar, D. Sanford and L.E. Strigari, New constraints on isospin-violating dark matter, Phys. Rev. D 85 (2012) 081301 [arXiv:1112.4849] [INSPIRE].ADSGoogle Scholar
  59. [59]
    H.-B. Jin, S. Miao and Y.-F. Zhou, Implications of the latest XENON100 and cosmic ray antiproton data for isospin violating dark matter, Phys. Rev. D 87 (2013) 016012 [arXiv:1207.4408] [INSPIRE].ADSGoogle Scholar
  60. [60]
    K. Hagiwara, D. Marfatia and T. Yamada, Isospin-violating dark matter at the LHC, Phys. Rev. D 89 (2014) 094017 [arXiv:1207.6857] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C.E. Yaguna, Isospin-violating dark matter in the light of recent data, Phys. Rev. D 95 (2017) 055015 [arXiv:1610.08683] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-component dark matter systems and their observation prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].ADSGoogle Scholar
  63. [63]
    R. Catena, Phenomenology of dark matter-nucleon effective interactions, in Proceedings, 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015), Torino Italy, 7-11 September 2015 [J. Phys. Conf. Ser. 718 (2016) 042012] [arXiv:1512.06254] [INSPIRE].
  64. [64]
    A.M. Green, Astrophysical uncertainties on the local dark matter distribution and direct detection experiments, J. Phys. G 44 (2017) 084001 [arXiv:1703.10102] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    N. Bozorgnia and G. Bertone, Implications of hydrodynamical simulations for the interpretation of direct dark matter searches, arXiv:1705.05853 [INSPIRE].
  66. [66]
    S.K. Lee and A.H.G. Peter, Probing the local velocity distribution of WIMP dark matter with directional detectors, JCAP 04 (2012) 029 [arXiv:1202.5035] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    B.J. Kavanagh and A.M. Green, Model independent determination of the dark matter mass from direct detection experiments, Phys. Rev. Lett. 111 (2013) 031302 [arXiv:1303.6868] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    B. Feldstein and F. Kahlhoefer, A new halo-independent approach to dark matter direct detection analysis, JCAP 08 (2014) 065 [arXiv:1403.4606] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Ibarra and A. Rappelt, Optimized velocity distributions for direct dark matter detection, JCAP 08 (2017) 039 [arXiv:1703.09168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Bradley J. Kavanagh
    • 1
  • Farinaldo S. Queiroz
    • 2
  • Werner Rodejohann
    • 2
  • Carlos E. Yaguna
    • 3
    Email author
  1. 1.Laboratoire de Physique Théorique et Hautes Energies, CNRS, UMR 7589ParisFrance
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Escuela de FísicaUniversidad Pedagógica y Tecnológica de ColombiaTunjaColombia

Personalised recommendations