Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation

  • Lorenzo Bianchi
  • Luca Griguolo
  • Michelangelo Preti
  • Domenico Seminara
Open Access
Regular Article - Theoretical Physics

Abstract

We study operator insertions into 1/2 BPS Wilson loops in \( \mathcal{N} \) = 6 ABJM theory and investigate their two-point correlators. In this framework, the energy emitted by a heavy moving probe can be exactly obtained from some two-point coefficients of bosonic and fermionic insertions. This allows us to confirm an early proposal [1] for computing the Bremsstrahlung function in terms of certain supersymmetric circular Wilson loops, whose value might be accessible to localization techniques. In the derivation of this result we also elucidate the structure of protected multiplets in the relevant superconformal defect theory and perform an explicit two-loop calculation.

Keywords

Chern-Simons Theories Supersymmetric Gauge Theory Wilson ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP 06 (2014) 123 [arXiv:1402.4128] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  4. [4]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 Mirror Model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    V. Pestun et al., Localization techniques in quantum field theories, arXiv:1608.02952 [INSPIRE].
  6. [6]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N} \) = (2, 2) Gauge Theories on S 2 and Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP 03 (2015) 155 [arXiv:1502.07154] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    J. Gomis, T. Okuda and V. Pestun, Exact Results for ’t Hooft Loops in Gauge Theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Gromov and F. Levkovich-Maslyuk, Quark-anti-quark potential in \( \mathcal{N} \) = 4 SYM, JHEP 12 (2016) 122 [arXiv:1601.05679] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. Fiol, E. Gerchkovitz and Z. Komargodski, Exact Bremsstrahlung Function in N = 2 Superconformal Field Theories, Phys. Rev. Lett. 116 (2016) 081601 [arXiv:1510.01332] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Bremsstrahlung function, leading Lüscher correction at weak coupling and localization, JHEP 02 (2016) 172 [arXiv:1511.05016] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and N = 6 Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J.A. Minahan, O. Ohlsson Sax and C. Sieg, Magnon dispersion to four loops in the ABJM and ABJ models, J. Phys. A 43 (2010) 275402 [arXiv:0908.2463] [INSPIRE].MathSciNetMATHGoogle Scholar
  30. [30]
    J.A. Minahan, O. Ohlsson Sax and C. Sieg, Anomalous dimensions at four loops in N = 6 superconformal Chern-Simons theories, Nucl. Phys. B 846 (2011) 542 [arXiv:0912.3460] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M. Leoni et al., Superspace calculation of the four-loop spectrum in N = 6 supersymmetric Chern-Simons theories, JHEP 12 (2010) 074 [arXiv:1010.1756] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    T. McLoughlin, R. Roiban and A.A. Tseytlin, Quantum spinning strings in AdS 4 × CP 3 : Testing the Bethe Ansatz proposal, JHEP 11 (2008) 069 [arXiv:0809.4038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M.C. Abbott, I. Aniceto and D. Bombardelli, Quantum Strings and the AdS 4 /CF T 3 Interpolating Function, JHEP 12 (2010) 040 [arXiv:1006.2174] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    C. Lopez-Arcos and H. Nastase, Eliminating ambiguities for quantum corrections to strings moving in AdS 4 × \( \mathbb{C}{\mathrm{\mathbb{P}}}^3 \), Int. J. Mod. Phys. A 28 (2013) 1350058 [arXiv:1203.4777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    L. Bianchi, M.S. Bianchi, A. Bres, V. Forini and E. Vescovi, Two-loop cusp anomaly in ABJM at strong coupling, JHEP 10 (2014) 013 [arXiv:1407.4788] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in N = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, On the Exact Interpolating Function in ABJ Theory, JHEP 12 (2016) 086 [arXiv:1605.04888] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].MathSciNetMATHGoogle Scholar
  41. [41]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CF T 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].CrossRefMATHGoogle Scholar
  42. [42]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS 4 × \( \mathbb{C}{\mathrm{\mathbb{P}}}^3 \) Wilson loops in \( \mathcal{N} \) = 6 super Chern-Simons-matter and bremsstrahlung functions, JHEP 06 (2014) 139 [arXiv:1405.1396] [INSPIRE].ADSMATHGoogle Scholar
  47. [47]
    A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178 [arXiv:1207.0611] [INSPIRE].ADSGoogle Scholar
  51. [51]
    L. Griguolo, D. Marmiroli, G. Martelloni and D. Seminara, The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories, JHEP 05 (2013) 113 [arXiv:1208.5766] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact Bremsstrahlung function of ABJM theory, JHEP 08 (2017) 022 [arXiv:1705.10780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    K.-M. Lee and S. Lee, 1/2-BPS Wilson Loops and Vortices in ABJM Model, JHEP 09 (2010) 004 [arXiv:1006.5589] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    V. Forini, V.G.M. Puletti and O. Ohlsson Sax, The generalized cusp in AdS 4 × CP 3 and more one-loop results from semiclassical strings, J. Phys. A 46 (2013) 115402 [arXiv:1204.3302] [INSPIRE].ADSMATHGoogle Scholar
  60. [60]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].Google Scholar
  61. [61]
    N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  62. [62]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N} \) = 4 SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    M. Preti, WiLE: a Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory, arXiv:1707.08108 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Lorenzo Bianchi
    • 1
  • Luca Griguolo
    • 2
  • Michelangelo Preti
    • 3
  • Domenico Seminara
    • 4
  1. 1.Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Dipartimento di Fisica e Scienze della TerraUniversità di Parma and INFN Gruppo Collegato di ParmaParmaItaly
  3. 3.DESY Hamburg, Theory GroupHamburgGermany
  4. 4.Dipartimento di FisicaUniversità di Firenze and INFN Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations