Advertisement

Higher dimensional operators in 2HDM

Open Access
Regular Article - Theoretical Physics

Abstract

We present a complete (non-redundant) basis of CP- and flavour-conserving six-dimensional operators in a two Higgs doublet model (2HDM). We include \( {\mathbb{Z}}_2 \)-violating operators as well. In such a 2HDM effective field theory (2HDMEFT), we estimate how constraining the 2HDM parameter space from experiments can get disturbed due to these operators. Our basis is motivated by the strongly interacting light Higgs (SILH) basis used in the standard model effective field theory (SMEFT). We find out bounds on combinations of Wilson coefficients of such operators from precision observables, signal strengths of Higgs decaying into vector bosons etc. In 2HDMEFT, the 2HDM parameter space can play a significant role while deriving such constraints, by leading to reduced or even enhanced effects compared to SMEFT in certain processes. We also comment on the implications of the SILH suppressions in such considerations.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
  2. [2]
    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (∗) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  6. [6]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.N. Leung, S.T. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  9. [9]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  12. [12]
    A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, arXiv:1706.08945 [INSPIRE].
  14. [14]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Perturbative unitarity bounds in composite two-Higgs doublet models, Phys. Rev. D 94 (2016) 055017 [arXiv:1602.06437] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Theory and Phenomenology of Composite 2-Higgs Doublet Models, PoS(CHARGED2016)018 [arXiv:1612.05125] [INSPIRE].
  17. [17]
    S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, Single and double SM-like Higgs boson production at future electron-positron colliders in composite 2HDMs, Phys. Rev. D 95 (2017) 095026 [arXiv:1702.07260] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Brown, C. Frugiuele and T. Gregoire, UV friendly T-parity in the SU(6)/Sp(6) little Higgs model, JHEP 06 (2011) 108 [arXiv:1012.2060] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    S. Gopalakrishna, T.S. Mukherjee and S. Sadhukhan, Status and Prospects of the Two-Higgs-Doublet SU(6)/Sp(6) little-Higgs Model and the Alignment Limit, Phys. Rev. D 94 (2016) 015034 [arXiv:1512.05731] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Carmona and M. Chala, Composite Dark Sectors, JHEP 06 (2015) 105 [arXiv:1504.00332] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.L. Diaz-Cruz, J. Hernandez-Sanchez and J.J. Toscano, An effective Lagrangian description of charged Higgs decays H +W + γ, W + Z and W + h 0, Phys. Lett. B 512 (2001) 339 [hep-ph/0106001] [INSPIRE].
  24. [24]
    Y. Kikuta and Y. Yamamoto, Derivative interactions and perturbative UV contributions in N Higgs Doublet Models, Eur. Phys. J. C 76 (2016) 297 [arXiv:1510.05540] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Kikuta, Y. Okada and Y. Yamamoto, Structure of dimension-six derivative interactions in pseudo Nambu-Goldstone N Higgs doublet models, Phys. Rev. D 85 (2012) 075021 [arXiv:1111.2120] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Y. Kikuta and Y. Yamamoto, Perturbative unitarity of Higgs derivative interactions, PTEP 2013 (2013) 053B05 [arXiv:1210.5674] [INSPIRE].
  27. [27]
    A. Crivellin, M. Ghezzi and M. Procura, Effective Field Theory with Two Higgs Doublets, JHEP 09 (2016) 160 [arXiv:1608.00975] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    I.F. Ginzburg and M. Krawczyk, Symmetries of two Higgs doublet model and CP-violation, Phys. Rev. D 72 (2005) 115013 [hep-ph/0408011] [INSPIRE].
  29. [29]
    I.F. Ginzburg, Necessity of mixed kinetic term in the description of general system with identical scalar fields, Phys. Lett. B 682 (2009) 61 [arXiv:0810.1546] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  32. [32]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ALEPH, DELPHI, L3, OPAL, and LEP TGC Working Group collaborations, A combination of results on charged triple gauge boson couplings measured by the LEP experiments, LEPEWWG/TGC/2003-01.Google Scholar
  36. [36]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
  38. [38]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  39. [39]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  40. [40]
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].
  41. [41]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D.C. Kennedy and B.W. Lynn, Electroweak Radiative Corrections with an Effective Lagrangian: Four Fermion Processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C.P. Burgess, The effective use of precision electroweak measurements, Pramana 45 (1995) S47 [hep-ph/9411257] [INSPIRE].
  44. [44]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  45. [45]
    O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H.E. Haber and O. Stål, New LHC benchmarks for the \( \mathcal{C}\mathcal{P} \) -conserving two-Higgs-doublet model, Eur. Phys. J. C 75 (2015) 491 [Erratum ibid. C 76 (2016) 312] [arXiv:1507.04281] [INSPIRE].
  47. [47]
    H. Bélusca-Maïto, A. Falkowski, D. Fontes, J.C. Romão and J.P. Silva, Higgs EFT for 2HDM and beyond, Eur. Phys. J. C 77 (2017) 176 [arXiv:1611.01112] [INSPIRE].
  48. [48]
    T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  50. [50]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  51. [51]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  52. [52]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  53. [53]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R.N. Cahn, The Higgs Boson, Rept. Prog. Phys. 52 (1989) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to hW W/ZZ4 fermions, arXiv:1704.02645 [INSPIRE].
  56. [56]
    S. Dawson et al., Working Group Report: Higgs Boson, arXiv:1310.8361 [INSPIRE].
  57. [57]
    M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
  58. [58]
    A. Pomarol, Higgs Physics, arXiv:1412.4410 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Discipline of Physics, Indian Institute of Technology IndoreIndoreIndia

Personalised recommendations