Reconsidering the one leptoquark solution: flavor anomalies and neutrino mass

Abstract

We reconsider a model introducing a scalar leptoquark ϕ ∼ (3 , 1 , −1/3) to explain recent deviations from the standard model in semileptonic B decays. The leptoquark can accommodate the persistent tension in the decays \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) as long as its mass is lower than approximately 10 TeV, and we show that a sizeable Yukawa coupling to the right-chiral tau lepton is necessary for an acceptable explanation. A characteristic prediction of this scenario is a value of \( {R}_{D^{*}} \) slightly smaller than the current world average. Agreement with the measured \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) rates is mildly compromised for parameter choices addressing the tensions in bsμμ, where the model can significantly reduce the discrepancies in angular observables, branching ratios and the lepton-flavor-universality observables R K and \( {R}_{K^{*}} \). The leptoquark can also reconcile the predicted and measured value of the anomalous magnetic moment of the muon and appears naturally in models of radiative neutrino mass derived from lepton-number violating effective operators. As a representative example, we incorporate the particle into an existing two-loop neutrino mass scenario derived from a dimension-nine operator. In this specific model, the structure of the neutrino mass matrix provides enough freedom to explain the small masses of the neutrinos in the region of parameter space dictated by agreement with the anomalies in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), but not the bs transition. This is achieved without excessive fine-tuning in the parameters important for neutrino mass.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. Hiller and F. Krüger, More model-independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].

  2. [2]

    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, arXiv:1704.05340 [INSPIRE].

  3. [3]

    B. Capdevila, S. Descotes-Genon, J. Matias and J. Virto, Assessing lepton-flavour non-universality from BK * ℓℓ angular analyses, JHEP 10 (2016) 075 [arXiv:1605.03156] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

  5. [5]

    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to \overline{K}{\ell}^{+}{\ell}^{-} \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  7. [7]

    M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and \( {R}_{K^{*}} \), Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ Anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    D. Ghosh, M. Nardecchia and S.A. Renner, Hint of Lepton Flavour Non-Universality in B Meson Decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Hurth, F. Mahmoudi and S. Neshatpour, Global fits to bsℓℓ data and signs for lepton non-universality, JHEP 12 (2014) 053 [arXiv:1410.4545] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S.L. Glashow, D. Guadagnoli and K. Lane, Lepton Flavor Violation in B Decays?, Phys. Rev. Lett. 114 (2015) 091801 [arXiv:1411.0565] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, arXiv:1704.05447 [INSPIRE].

  18. [18]

    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, arXiv:1704.05446 [INSPIRE].

  19. [19]

    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    A. Bharucha, D.M. Straub and R. Zwicky, BVℓ + in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD or new physics in bsℓ + ?,arXiv:1406.0566 [INSPIRE].

  22. [22]

    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of BK * μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the BK * + decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93 (2016) 014028 [arXiv:1412.3183] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}\tau -{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

  25. [25]

    BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}\tau -{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  26. [26]

    Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].

  27. [27]

    Belle collaboration, Y. Sato et al., Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].

  28. [28]

    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D *) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].

  29. [29]

    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({B}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [arXiv:1506.08614] [INSPIRE].

  30. [30]

    Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{*}} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    D. Choudhury, A. Kundu, S. Nandi and S.K. Patra, Unified resolution of the R(D) and R(D *) anomalies and the lepton flavor violating decay hμτ, Phys. Rev. D 95 (2017) 035021 [arXiv:1612.03517] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    S. Bhattacharya, S. Nandi and S.K. Patra, Looking for possible new physics in B → D (∗) τν τ in light of recent data, Phys. Rev. D 95 (2017) 075012 [arXiv:1611.04605] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    S. Bhattacharya, S. Nandi and S.K. Patra, Optimal-observable analysis of possible new physics in BD (*) τν τ , Phys. Rev. D 93 (2016) 034011 [arXiv:1509.07259] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  37. [37]

    MILC collaboration, J.A. Bailey et al., BDℓν form factors at nonzero recoil and |V cb | from 2 + 1-flavor lattice QCD, Phys. Rev. D 92 (2015) 034506 [arXiv:1503.07237] [INSPIRE].

  38. [38]

    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2) g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive bsℓ 1 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].

    Google Scholar 

  42. [42]

    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D , Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to bsℓℓ (′) , \( B\to K\left(\ast \right)\nu \overline{\nu} \) and BD(*)τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (*)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    F.F. Deppisch, S. Kulkarni, H. Päs and E. Schumacher, Leptoquark patterns unifying neutrino masses, flavor anomalies and the diphoton excess, Phys. Rev. D 94 (2016) 013003 [arXiv:1603.07672] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    N.G. Deshpande and X.-G. He, Consequences of R-parity violating interactions for anomalies in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and b+μ−, Eur. Phys. J. C 77 (2017) 134 [arXiv:1608.04817] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavor Universality in B Decays, Phys. Rev. Lett. 118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    F. Feruglio, P. Paradisi and A. Pattori, On the Importance of Electroweak Corrections for B Anomalies, JHEP 09 (2017) 061 [arXiv:1705.00929] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    E. Megias, M. Quirós and L. Salas, Lepton-flavor universality violation in R K and \( {R}_{D^{\left(\ast \right)}} \) from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    O. Popov and G.A. White, One Leptoquark to unify them? Neutrino masses and unification in the light of (g − 2) μ , \( {R}_{D^{\left(\ast \right)}} \) and R K anomalies, Nucl. Phys. B 923 (2017) 324 [arXiv:1611.04566] [INSPIRE].

    Article  Google Scholar 

  54. [54]

    D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in bsℓ + processes, Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    D. Bečirević and O. Sumensari, A leptoquark model to accommodate R exp K  < R SM K and \( {R}_{K^{*}}^{\exp }<{R}_{K^{*}}^{\mathrm{SM}} \), JHEP 08 (2017) 104 [arXiv:1704.05835] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    A.J. Buras and J. Girrbach, Left-handed Zand Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    R. Gauld, F. Goertz and U. Haisch, On minimal Zexplanations of the BK * μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    G. Hiller and M. Schmaltz, Diagnosing lepton-nonuniversality in bsℓℓ, JHEP 02 (2015) 055 [arXiv:1411.4773] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    F. Mahmoudi, S. Neshatpour and J. Virto, BK * μ + μ optimised observables in the MSSM, Eur. Phys. J. C 74 (2014) 2927 [arXiv:1401.2145] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    E. Megias, G. Panico, O. Pujolàs and M. Quirós, A natural origin for the LHCb anomalies, JHEP 09 (2016) 118 [arXiv:1608.02362] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    H. Päs and E. Schumacher, Common origin of R K and neutrino masses, Phys. Rev. D 92 (2015) 114025 [arXiv:1510.08757] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    S. Sahoo and R. Mohanta, Leptoquark effects on \( b\to s\nu \overline{\nu} \) and BKℓ + decay processes, New J. Phys. 18 (2016) 013032 [arXiv:1509.06248] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    S. Sahoo and R. Mohanta, Study of the rare semileptonic decays B 0 d  → K l + l in scalar leptoquark model, Phys. Rev. D 93 (2016) 034018 [arXiv:1507.02070] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the bs anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072 [arXiv:1503.01084] [INSPIRE].

    Article  Google Scholar 

  67. [67]

    S. de Boer and G. Hiller, Flavor and new physics opportunities with rare charm decays into leptons, Phys. Rev. D 93 (2016) 074001 [arXiv:1510.00311] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].

  69. [69]

    A. de Gouvêa and J. Jenkins, A Survey of Lepton Number Violation Via Effective Operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    K. Cheung, T. Nomura and H. Okada, Testable radiative neutrino mass model without additional symmetries and explanation for the bsℓ + anomaly, Phys. Rev. D 94 (2016) 115024 [arXiv:1610.02322] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    K. Cheung, T. Nomura and H. Okada, A Three-loop Neutrino Model with Leptoquark Triplet Scalars, Phys. Lett. B 768 (2017) 359 [arXiv:1701.01080] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    K. Cheung, T. Nomura and H. Okada, Three-loop neutrino mass model with a colored triplet scalar, Phys. Rev. D 95 (2017) 015026 [arXiv:1610.04986] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    K.S. Babu and J. Julio, Two-Loop Neutrino Mass Generation through Leptoquarks, Nucl. Phys. B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  75. [75]

    D. Aristizabal Sierra, M. Hirsch and S.G. Kovalenko, Leptoquarks: Neutrino masses and accelerator phenomenology, Phys. Rev. D 77 (2008) 055011 [arXiv:0710.5699] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    P.W. Angel, Y. Cai, N.L. Rodd, M.A. Schmidt and R.R. Volkas, Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator, JHEP 10 (2013) 118 [Erratum ibid. 11 (2014) 092] [arXiv:1308.0463] [INSPIRE].

  77. [77]

    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  78. [78]

    CMS collaboration, Search for pair production of first and second generation leptoquarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 032004 [arXiv:1509.03744] [INSPIRE].

  79. [79]

    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 5 [arXiv:1508.04735] [INSPIRE].

  80. [80]

    B. Dumont, K. Nishiwaki and R. Watanabe, LHC constraints and prospects for S 1 scalar leptoquark explaining the \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) anomaly, Phys. Rev. D 94 (2016) 034001 [arXiv:1603.05248] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    BaBar collaboration, B. Aubert et al., Determination of the form-factors for the decay B 0D *− + ν l and of the CKM matrix element |V cb |, Phys. Rev. D 77 (2008) 032002 [arXiv:0705.4008] [INSPIRE].

  82. [82]

    BaBar collaboration, B. Aubert et al., Measurements of the Semileptonic Decays \( \overline{B}\to D\ell \overline{\nu} \) and \( \overline{B}\to {D}^{\ast}\ell \overline{\nu} \) Using a Global Fit to \( D\to X\ell \overline{\nu} \) Final States, Phys. Rev. D 79 (2009) 012002 [arXiv:0809.0828] [INSPIRE].

  83. [83]

    Belle collaboration, K. Abe et al., Measurement of \( BR\left({\overline{B}}_0\to {D}^{+}{\ell}^{-}\overline{\nu}\right) \) and determination of |V cb |, Phys. Lett. B 526 (2002) 258 [hep-ex/0111082] [INSPIRE].

  84. [84]

    Belle collaboration, W. Dungel et al., Measurement of the form factors of the decay B 0D * + ν and determination of the CKM matrix element |V cb |, Phys. Rev. D 82 (2010) 112007 [arXiv:1010.5620] [INSPIRE].

  85. [85]

    I. Doršner, S. Fajfer, N. Košnik and I. Nišandžić, Minimally flavored colored scalar in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and the mass matrices constraints, JHEP 11 (2013) 084 [arXiv:1306.6493] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000)43 [hep-ph/0004189] [INSPIRE].

  87. [87]

    M. Misiak, The bse + e and bsγ decays with next-to-leading logarithmic QCD corrections, Nucl. Phys. B 393 (1993) 23 [Erratum ibid. B 439 (1995) 461] [INSPIRE].

  88. [88]

    BaBar collaboration, J.P. Lees et al., Measurement of the BX s l + l branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].

  89. [89]

    A. Djouadi, T. Kohler, M. Spira and J. Tutas, (eb), (et) type leptoquarks at e p colliders, Z. Phys. C 46 (1990) 679 [INSPIRE].

  90. [90]

    D. Chakraverty, D. Choudhury and A. Datta, A nonsupersymmetric resolution of the anomalous muon magnetic moment, Phys. Lett. B 506 (2001) 103 [hep-ph/0102180] [INSPIRE].

  91. [91]

    K.-m. Cheung, Muon anomalous magnetic moment and leptoquark solutions, Phys. Rev. D 64 (2001) 033001 [hep-ph/0102238] [INSPIRE].

  92. [92]

    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  93. [93]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c Constrains Explanations for Anomalies in BD (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    Belle collaboration, A. Zupanc et al., Measurements of branching fractions of leptonic and hadronic D + s meson decays and extraction of the D + s meson decay constant, JHEP 09 (2013) 139 [arXiv:1307.6240] [INSPIRE].

  96. [96]

    Belle collaboration, R. Glattauer et al., Measurement of the decay BDℓν in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |V cb |, Phys. Rev. D 93 (2016) 032006 [arXiv:1510.03657] [INSPIRE].

  97. [97]

    Belle collaboration, A. Abdesselam et al., Precise determination of the CKM matrix element |V cb | with \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, arXiv:1702.01521 [INSPIRE].

  98. [98]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  99. [99]

    V. Cirigliano and I. Rosell, \( \pi /K\to e{\overline{\nu}}_e \) branching ratios to O(e 2 p 4) in Chiral Perturbation Theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [INSPIRE].

  100. [100]

    M. Finkemeier, Radiative corrections to π l2 and K l2 decays, hep-ph/9501286 [INSPIRE].

  101. [101]

    W. Buchmüller and D. Wyler, Constraints on SU(5) Type Leptoquarks, Phys. Lett. B 177 (1986) 377 [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    S. Davidson, D.C. Bailey and B.A. Campbell, Model independent constraints on leptoquarks from rare processes, Z. Phys. C 61 (1994) 613 [hep-ph/9309310] [INSPIRE].

  103. [103]

    X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D (*)) anomalies and its phenomenological implications, JHEP 08 (2016) 054 [arXiv:1605.09308] [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    BaBar collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ +e + γ and τ +μ + γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

  105. [105]

    Belle collaboration, Y. Miyazaki et al., Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].

  106. [106]

    SINDRUM II collaboration, W.H. Bertl et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

  107. [107]

    Y. Cai, J.D. Clarke, M.A. Schmidt and R.R. Volkas, Testing Radiative Neutrino Mass Models at the LHC, JHEP 02 (2015) 161 [arXiv:1410.0689] [INSPIRE].

    ADS  Article  Google Scholar 

  108. [108]

    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for New Physics search in \( B\to {K}^{\ast}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {X}_s\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].

    ADS  Article  Google Scholar 

  109. [109]

    A.J. Buras, F. Schwab and S. Uhlig, Waiting for precise measurements of \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \), Rev. Mod. Phys. 80 (2008) 965 [hep-ph/0405132] [INSPIRE].

  110. [110]

    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu},\kern0.5em B\to X\nu \overline{\nu} \) and Bl + l : An update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

  111. [111]

    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].

  112. [112]

    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  113. [113]

    G. Kumar, Constraints on a scalar leptoquark from the kaon sector, Phys. Rev. D 94 (2016) 014022 [arXiv:1603.00346] [INSPIRE].

    ADS  Google Scholar 

  114. [114]

    BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].

  115. [115]

    LHCb collaboration, Search for the rare decay D 0μ + μ , Phys. Lett. B 725 (2013) 15 [arXiv:1305.5059] [INSPIRE].

  116. [116]

    S. Fajfer and N. Košnik, Prospects of discovering new physics in rare charm decays, Eur. Phys. J. C 75 (2015) 567 [arXiv:1510.00965] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    LHCb collaboration, Search for D + s  → π + μ + μ and D + s  → π μ + μ + decays, Phys. Lett. B 724 (2013) 203 [arXiv:1304.6365] [INSPIRE].

  118. [118]

    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  119. [119]

    R. Fleischer, Flavour Physics and CP-violation: Expecting the LHC, arXiv:0802.2882 [INSPIRE].

  120. [120]

    T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K}_L\to \mu \overline{\mu} \) , \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}^0\leftrightarrow {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

  121. [121]

    J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One Loop: Complete Renormalization Group Evolution below the Electroweak Scale, arXiv:1704.06639 [INSPIRE].

  122. [122]

    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].

    ADS  Article  Google Scholar 

  123. [123]

    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  124. [124]

    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    Nufit 3.0 (2016), www.nu-fit.org.

  126. [126]

    COMET collaboration, A. Kurup, The COherent Muon to Electron Transition (COMET) experiment, Nucl. Phys. Proc. Suppl. 218 (2011) 38 [INSPIRE].

  127. [127]

    U. Mahanta, Neutrino masses and mixing angles from leptoquark interactions, Phys. Rev. D 62 (2000) 073009 [hep-ph/9909518] [INSPIRE].

  128. [128]

    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].

    ADS  Article  Google Scholar 

  129. [129]

    J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Gargalionis.

Additional information

ArXiv ePrint: 1704.05849

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Gargalionis, J., Schmidt, M.A. et al. Reconsidering the one leptoquark solution: flavor anomalies and neutrino mass. J. High Energ. Phys. 2017, 47 (2017). https://doi.org/10.1007/JHEP10(2017)047

Download citation

Keywords

  • Beyond Standard Model
  • Heavy Quark Physics
  • Neutrino Physics