Advertisement

The B-field soft theorem and its unification with the graviton and dilaton

  • Paolo Di Vecchia
  • Raffaele Marotta
  • Matin MojazaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton’s soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.

Keywords

Bosonic Strings Scattering Amplitudes Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].ADSGoogle Scholar
  2. [2]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton, JHEP 12 (2016) 020 [arXiv:1610.03481] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev. D 93 (2016) 085015 [arXiv:1512.03316] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    R. Roiban and A.A. Tseytlin, On four-point interactions in massless higher spin theory in flat space, JHEP 04 (2017) 139 [arXiv:1701.05773] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  9. [9]
    M. Campiglia, L. Coito and S. Mizera, Can scalars have asymptotic symmetries?, arXiv:1703.07885 [INSPIRE].
  10. [10]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    K. Kampf, J. Novotny and J. Trnka, Tree-level Amplitudes in the Nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    Y.-J. Du and H. Lüo, On single and double soft behaviors in NLSM, JHEP 08 (2015) 058 [arXiv:1505.04411] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.H. Boels and W. Wormsbecher, Spontaneously broken conformal invariance in observables, arXiv:1507.08162 [INSPIRE].
  15. [15]
    Y.-t. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, arXiv:1705.10078 [INSPIRE].
  19. [19]
    C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, arXiv:1705.03025 [INSPIRE].
  20. [20]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorem for the graviton, dilaton and the Kalb-Ramond field in the bosonic string, JHEP 05 (2015) 137 [arXiv:1502.05258] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    B.U.W. Schwab, A Note on Soft Factors for Closed String Scattering, JHEP 03 (2015) 140 [arXiv:1411.6661] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Bianchi and A.L. Guerrieri, On the soft limit of closed string amplitudes with massive states, Nucl. Phys. B 905 (2016) 188 [arXiv:1512.00803] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    P. Di Vecchia, R. Marotta and M. Mojaza, Subsubleading soft theorems of gravitons and dilatons in the bosonic string, JHEP 06 (2016) 054 [arXiv:1604.03355] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  24. [24]
    A. Sen, Soft Theorems in Superstring Theory, JHEP 06 (2017) 113 [arXiv:1702.03934] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. Sen, Subleading Soft Graviton Theorem for Loop Amplitudes, arXiv:1703.00024 [INSPIRE].
  26. [26]
    A. Laddha and A. Sen, Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity, arXiv:1706.00759 [INSPIRE].
  27. [27]
    S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    D.J. Gross and R. Jackiw, Low-Energy Theorem for Graviton Scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Jackiw, Low-Energy Theorems for Massless Bosons: Photons and Gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Ademollo et al., Soft Dilations and Scale Renormalization in Dual Theories, Nucl. Phys. B 94 (1975) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.A. Shapiro, On the Renormalization of Dual Models, Phys. Rev. D 11 (1975) 2937 [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on Soft Theorems: Trees, Loops and Strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    B.U.W. Schwab, Subleading Soft Factor for String Disk Amplitudes, JHEP 08 (2014) 062 [arXiv:1406.4172] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    M. Bianchi and A.L. Guerrieri, On the soft limit of open string disk amplitudes with massive states, JHEP 09 (2015) 164 [arXiv:1505.05854] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior for scalars and gluons from string theory, JHEP 12 (2015) 150 [arXiv:1507.00938] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    A.L. Guerrieri, Soft behavior of string amplitudes with external massive states, Nuovo Cim. C 39 (2016) 221 [arXiv:1507.08829] [INSPIRE].ADSGoogle Scholar
  38. [38]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft Theorems from String Theory, Fortsch. Phys. 64 (2016) 389 [arXiv:1511.04921] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Local contributions to factorized soft graviton theorems at loop level, Phys. Lett. B 746 (2015) 293 [arXiv:1411.2230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Paolo Di Vecchia
    • 1
    • 2
  • Raffaele Marotta
    • 3
  • Matin Mojaza
    • 4
    Email author
  1. 1.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di NapoliComplesso Universitario di Monte S. Angelo ed. 6NapoliItaly
  4. 4.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations