Journal of High Energy Physics

, 2016:125 | Cite as

The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production

  • Zhong-Bo KangEmail author
  • Felix Ringer
  • Ivan Vitev
Open Access
Regular Article - Theoretical Physics


We introduce a new kind of jet function: the semi-inclusive jet function J i (z, ω J , μ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J , with ω J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J q (z, ω J , μ) and J g (z, ω J , μ) to the next-to-leading order (NLO) for cone and anti-kT algorithms. We demonstrate that the renormalization group (RG) equations for J i (z, ω J , μ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R. We clarify the difference between our RG equations for J i (z, ω J , μ) and those for the so-called unmeasured jet functions J i (ω J , μ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e + e and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D i h (zμ) replaced by J i (z, ω J , μ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL R and NLL R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.


Perturbative QCD Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Buttar et al., Standard Model Handles and Candles Working Group: Tools and Jets Summary Report, arXiv:0803.0678 [INSPIRE].
  4. [4]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Ali and G. Kramer, Jets and QCD: A Historical Review of the Discovery of the Quark and Gluon Jets and its Impact on QCD, Eur. Phys. J. H 36 (2011) 245 [arXiv:1012.2288] [INSPIRE].Google Scholar
  6. [6]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Sapeta, QCD and Jets at Hadron Colliders, Prog. Part. Nucl. Phys. 89 (2016) 1 [arXiv:1511.09336] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y.-T. Chien, Z.-B. Kang, F. Ringer, I. Vitev and H. Xing, Jet fragmentation functions in proton-proton collisions using soft-collinear effective theory, JHEP 05 (2016) 125 [arXiv:1512.06851] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H.L. Lai et al., Improved parton distributions from global analysis of recent deep inelastic scattering and inclusive jet data, Phys. Rev. D 55 (1997) 1280 [hep-ph/9606399] [INSPIRE].
  11. [11]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, MRST2001: Partons and α s from precise deep inelastic scattering and Tevatron jet data, Eur. Phys. J. C 23 (2002) 73 [hep-ph/0110215] [INSPIRE].
  12. [12]
    D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE].
  13. [13]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Vitev, S. Wicks and B.-W. Zhang, A Theory of jet shapes and cross sections: From hadrons to nuclei, JHEP 11 (2008) 093 [arXiv:0810.2807] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Vitev and B.-W. Zhang, Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order, Phys. Rev. Lett. 104 (2010) 132001 [arXiv:0910.1090] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. He, I. Vitev and B.-W. Zhang, \( \mathcal{O}\left({\alpha}_s^3\right) \) Analysis of Inclusive Jet and di-Jet Production in Heavy Ion Reactions at the Large Hadron Collider, Phys. Lett. B 713 (2012) 224 [arXiv:1105.2566] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Müller, J. Schukraft and B. Wyslouch, First Results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Armesto and E. Scomparin, Heavy-ion collisions at the Large Hadron Collider: a review of the results from Run 1, Eur. Phys. J. Plus 131 (2016) 52 [arXiv:1511.02151] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G.P. Salam and G. Soyez, A Practical Seedless Infrared-Safe Cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  22. [22]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  23. [23]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  24. [24]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  25. [25]
    ATLAS collaboration, Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220 [arXiv:1208.1967] [INSPIRE].
  26. [26]
    ALICE collaboration, Measurement of charged jet suppression in Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, JHEP 03 (2014) 013 [arXiv:1311.0633] [INSPIRE].
  27. [27]
    ATLAS collaboration, Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 739 (2014) 320 [arXiv:1406.2979] [INSPIRE].
  28. [28]
    CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].
  29. [29]
    ALICE collaboration, Measurement of jet suppression in central Pb-Pb collisions at \( \sqrt{s_{N\;N}}=2.76 \) TeV, Phys. Lett. B 746 (2015) 1 [arXiv:1502.01689] [INSPIRE].
  30. [30]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, arXiv:1605.02737 [INSPIRE].
  33. [33]
    D.W. Kolodrubetz, P. Pietrulewicz, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization for Jet Radius Logarithms in Jet Mass Spectra at the LHC, arXiv:1605.08038 [INSPIRE].
  34. [34]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Dasgupta, F.A. Dreyer, G.P. Salam and G. Soyez, Inclusive jet spectrum for small-radius jets, JHEP 06 (2016) 057 [arXiv:1602.01110] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Jager, M. Stratmann and W. Vogelsang, Single inclusive jet production in polarized pp collisions at O(alpha s3), Phys. Rev. D 70 (2004) 034010 [hep-ph/0404057] [INSPIRE].
  37. [37]
    A. Mukherjee and W. Vogelsang, Jet production in (un)polarized pp collisions: dependence on jet algorithm, Phys. Rev. D 86 (2012) 094009 [arXiv:1209.1785] [INSPIRE].ADSGoogle Scholar
  38. [38]
    F. Ringer, Semi-Inclusive Jet Functions and small-R resummation in SCET, talk presented at 2016 QCD Evolution Workshop, Amsterdam Netherlands (2016), available at =slides&confId=191.
  39. [39]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  40. [40]
    L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [Yad. Fiz. 20 (1974) 181] [INSPIRE].
  41. [41]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. de Florian and W. Vogelsang, Resummed cross-section for jet production at hadron colliders, Phys. Rev. D 76 (2007) 074031 [arXiv:0704.1677] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer and W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production, Phys. Rev. Lett. 112 (2014) 082001 [arXiv:1310.7192] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Z.-B. Kang, S. Mantry and J.-W. Qiu, N-Jettiness as a Probe of Nuclear Dynamics, Phys. Rev. D 86 (2012) 114011 [arXiv:1204.5469] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D. Kang, C. Lee and I.W. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Z.-B. Kang, X. Liu, S. Mantry and J.-W. Qiu, Probing nuclear dynamics in jet production with a global event shape, Phys. Rev. D 88 (2013) 074020 [arXiv:1303.3063] [INSPIRE].ADSGoogle Scholar
  49. [49]
    Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Kang, C. Lee and I.W. Stewart, Analytic calculation of 1-jettiness in DIS at \( \mathcal{O}\left({\alpha}_s\right) \), JHEP 11 (2014) 132 [arXiv:1407.6706] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Hinderer, M. Schlegel and W. Vogelsang, Single-Inclusive Production of Hadrons and Jets in Lepton-Nucleon Scattering at NLO, Phys. Rev. D 92 (2015) 014001 [arXiv:1505.06415] [INSPIRE].ADSGoogle Scholar
  52. [52]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  53. [53]
    A. Accardi et al., Electron Ion Collider: The Next QCD Frontier — Understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Kaufmann, A. Mukherjee and W. Vogelsang, Hadron Fragmentation Inside Jets in Hadronic Collisions, Phys. Rev. D 92 (2015) 054015 [arXiv:1506.01415] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].
  58. [58]
    D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation Functions at Next-to-Next-to-Leading Order Accuracy, Phys. Rev. D 92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].ADSGoogle Scholar
  59. [59]
    G.T. Bodwin, K.-T. Chao, H.S. Chung, U.-R. Kim, J. Lee and Y.-Q. Ma, Fragmentation contributions to hadroproduction of prompt J/ψ, χ cJ and ψ(2s) states, Phys. Rev. D 93 (2016) 034041 [arXiv:1509.07904] [INSPIRE].ADSGoogle Scholar
  60. [60]
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Factorization and the Parton Model in QCD, Phys. Lett. B 78 (1978) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Perturbation Theory and the Parton Model in QCD, Nucl. Phys. B 152 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.C. Collins and G.F. Sterman, Soft Partons in QCD, Nucl. Phys. B 185 (1981) 172 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  64. [64]
    M. Fickinger, S. Fleming, C. Kim and E. Mereghetti, Effective field theory approach to heavy quark fragmentation, arXiv:1606.07737 [INSPIRE].
  65. [65]
    OPAL collaboration, R. Akers et al., QCD studies using a cone based jet finding algorithm for e + e collisions at LEP, Z. Phys. C 63 (1994) 197 [INSPIRE].
  66. [66]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  67. [67]
    G. Altarelli, R.K. Ellis, G. Martinelli and S.-Y. Pi, Processes Involving Fragmentation Functions Beyond the Leading Order in QCD, Nucl. Phys. B 160 (1979) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W. Furmanski and R. Petronzio, Lepton-Hadron Processes Beyond Leading Order in Quantum Chromodynamics, Z. Phys. C 11 (1982) 293 [INSPIRE].ADSGoogle Scholar
  69. [69]
    P. Nason and B.R. Webber, Scaling violation in e + e fragmentation functions: QCD evolution, hadronization and heavy quark mass effects, Nucl. Phys. B 421 (1994) 473 [Erratum ibid. B 480 (1996) 755] [INSPIRE].
  70. [70]
    S. Kretzer, Fragmentation functions from flavor inclusive and flavor tagged e + e annihilations, Phys. Rev. D 62 (2000) 054001 [hep-ph/0003177] [INSPIRE].
  71. [71]
    D.P. Anderle, F. Ringer and W. Vogelsang, QCD resummation for semi-inclusive hadron production processes, Phys. Rev. D 87 (2013) 034014 [arXiv:1212.2099] [INSPIRE].ADSGoogle Scholar
  72. [72]
    Z.-B. Kang, J.-W. Qiu and G. Sterman, Heavy quarkonium production and polarization, Phys. Rev. Lett. 108 (2012) 102002 [arXiv:1109.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at Collider Energies: Factorization and Evolution, Phys. Rev. D 90 (2014) 034006 [arXiv:1401.0923] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at Collider Energies: Partonic Cross Section and Polarization, Phys. Rev. D 91 (2015) 014030 [arXiv:1411.2456] [INSPIRE].ADSGoogle Scholar
  75. [75]
    F. Aversa, P. Chiappetta, M. Greco and J.P. Guillet, QCD Corrections to Parton-Parton Scattering Processes, Nucl. Phys. B 327 (1989) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    B. Jager, A. Schafer, M. Stratmann and W. Vogelsang, Next-to-leading order QCD corrections to high p T pion production in longitudinally polarized pp collisions, Phys. Rev. D 67 (2003) 054005 [hep-ph/0211007] [INSPIRE].
  77. [77]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  78. [78]
    Z.-B. Kang, F. Ringer and I. Vitev, Jet substructure using semi-inclusive jet functions within SCET, arXiv:1606.07063 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.

Personalised recommendations