Advertisement

Journal of High Energy Physics

, 2016:123 | Cite as

Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD

  • Fabio Maltoni
  • Eleni Vryonidou
  • Cen Zhang
Open Access
Regular Article - Theoretical Physics

Abstract

We present the results of the computation of the next-to-leading order QCD corrections to the production cross section of a Higgs boson in association with a top-antitop pair at the LHC, including the three relevant dimension-six operators (O , O φG , O tG ) of the standard model effective field theory. These operators also contribute to the production of Higgs bosons in loop-induced processes at the LHC, such as inclusive Higgs, Hj and HH production, and modify the Higgs decay branching ratios for which we also provide predictions. We perform a detailed study of the cross sections and their uncertainties at the total as well as differential level and of the structure of the effective field theory at NLO including renormalisation group effects. Finally, we show how the combination of information coming from measurements of these production processes will allow to constrain the three operators at the current and future LHC runs. Our results lead to a significant improvement of the accuracy and precision of the deviations expected from higher-dimensional operators in the SM in both the top-quark and the Higgs-boson sectors and provide a necessary ingredient for performing a global EFT fit to the LHC data at NLO accuracy.

Keywords

NLO Computations Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].
  3. [3]
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].ADSGoogle Scholar
  4. [4]
    F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-top couplings in associated production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Khatibi and M. Mohammadi Najafabadi, Exploring the anomalous Higgs-top couplings, Phys. Rev. D 90 (2014) 074014 [arXiv:1409.6553] [INSPIRE].ADSGoogle Scholar
  7. [7]
    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Kolodziej and A. Slapik, Probing the top-Higgs coupling through the secondary lepton distributions in the associated production of the top-quark pair and Higgs boson at the LHC, Eur. Phys. J. C 75 (2015) 475 [arXiv:1507.01572] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.R. Buckley and D. Goncalves, Boosting the direct CP measurement of the Higgs-top coupling, Phys. Rev. Lett. 116 (2016) 091801 [arXiv:1507.07926] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.L. Mangano, T. Plehn, P. Reimitz, T. Schell and H.-S. Shao, Measuring the top Yukawa coupling at 100 TeV, J. Phys. G 43 (2016) 035001 [arXiv:1507.08169] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Moretti, P. Petrov, S. Pozzorini and M. Spannowsky, Measuring the signal strength in \( t\overline{t}H \) with \( H\to b\overline{b} \), Phys. Rev. D 93 (2016) 014019 [arXiv:1510.08468] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Q.-H. Cao, S.-L. Chen and Y. Liu, Probing Higgs width and top quark Yukawa coupling from \( t\overline{t}H \) and \( t\overline{t}t\overline{t} \) productions, arXiv:1602.01934 [INSPIRE].
  13. [13]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.V. Gritsan, R. Röntsch, M. Schulze and M. Xiao, Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques, Phys. Rev. D 94 (2016) 055023 [arXiv:1606.03107] [INSPIRE].ADSGoogle Scholar
  15. [15]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].
  16. [16]
    W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO QCD corrections to ttH production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].
  17. [17]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].
  18. [18]
    L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated \( t\overline{t}h \) production at the Tevatron, Phys. Rev. D 65 (2002) 053017 [hep-ph/0109066] [INSPIRE].
  19. [19]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].
  20. [20]
    S. Dawson, C. Jackson, L.H. Orr, L. Reina and D. Wackeroth, Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022 [hep-ph/0305087] [INSPIRE].
  21. [21]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering, Europhys. Lett. 96 (2011) 11001 [arXiv:1108.0387] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Denner and R. Feger, NLO QCD corrections to off-shell top-antitop production with leptonic decays in association with a Higgs boson at the LHC, JHEP 11 (2015) 209 [arXiv:1506.07448] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO corrections to \( t\overline{t}H \) production with top quark decays at hadron collider, Phys. Lett. B 738 (2014) 1 [arXiv:1407.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H.B. Hartanto, B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association with top quarks in the POWHEG BOX, Phys. Rev. D 91 (2015) 094003 [arXiv:1501.04498] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Kulesza, L. Motyka, T. Stebel and V. Theeuwes, Soft gluon resummation for associated ttH production at the LHC, JHEP 03 (2016) 065 [arXiv:1509.02780] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Broggio, A. Ferroglia, B.D. Pecjak, A. Signer and L.L. Yang, Associated production of a top pair and a Higgs boson beyond NLO, JHEP 03 (2016) 124 [arXiv:1510.01914] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CMS collaboration, Search for the associated production of the Higgs boson with a top-quark pair, JHEP 09 (2014) 087 [Erratum ibid. 10 (2014) 106] [arXiv:1408.1682] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for Hγγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector, Phys. Lett. B 740 (2015) 222 [arXiv:1409.3122] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector, Phys. Lett. B 749 (2015) 519 [arXiv:1506.05988] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into \( b\overline{b} \) in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349 [arXiv:1503.05066] [INSPIRE].
  34. [34]
    CMS collaboration, Search for ttH production in multilepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-15-008, CERN, Geneva Switzerland (2016).
  35. [35]
    CMS collaboration, Search for \( t\overline{t}H \) production in the \( H\to b\overline{b} \) decay channel with \( \sqrt{s}=13 \) TeV pp collisions at the CMS experiment,CMS-PAS-HIG-16-004,CERN,Geneva Switzerland (2016).
  36. [36]
    ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016, CERN, Geneva Switzerland (2014).
  37. [37]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev. D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Zhang, Single top production at next-to-leading order in the Standard Model Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t}+Z \) production at the LHC, JHEP 07 (2014) 091 [Erratum ibid. 09 (2015) 132] [arXiv:1404.1005] [INSPIRE].
  47. [47]
    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    C. Hartmann and M. Trott, On one-loop corrections in the Standard Model Effective Field Theory; the Γ(hγ γ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the Standard Model Effective Field Theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to \( h\to b\overline{b} \) and \( h\to \tau\ \overline{\tau} \) decays in the Standard Model dimension-6 EFT: four-fermion operators and the large-m t limit, JHEP 05 (2016) 080 [arXiv:1512.02508] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  54. [54]
    E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].ADSGoogle Scholar
  55. [55]
    B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    R. Edezhath, Dimension-6 operator constraints from boosted VBF Higgs, arXiv:1501.00992 [INSPIRE].
  59. [59]
    T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn and M. Rauch, The Higgs legacy of the LHC run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The gauge-Higgs legacy of the LHC run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.J. Liu, C.S. Li, L.L. Yang and L.G. Jin, Next-to-leading order QCD corrections to the direct top quark production via model-independent FCNC couplings at hadron colliders, Phys. Rev. D 72 (2005) 074018 [hep-ph/0508016] [INSPIRE].
  62. [62]
    J. Gao, C.S. Li, J.J. Zhang and H.X. Zhu, Next-to-leading order QCD corrections to the single top quark production via model-independent t-q-g flavor-changing neutral-current couplings at hadron colliders, Phys. Rev. D 80 (2009) 114017 [arXiv:0910.4349] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Y. Zhang, B.H. Li, C.S. Li, J. Gao and H.X. Zhu, Next-to-leading order QCD corrections to the top quark associated with γ production via model-independent flavor-changing neutral-current couplings at hadron colliders, Phys. Rev. D 83 (2011) 094003 [arXiv:1101.5346] [INSPIRE].ADSGoogle Scholar
  64. [64]
    B.H. Li, Y. Zhang, C.S. Li, J. Gao and H.X. Zhu, Next-to-leading order QCD corrections to tZ associated production via the flavor-changing neutral-current couplings at hadron colliders, Phys. Rev. D 83 (2011) 114049 [arXiv:1103.5122] [INSPIRE].ADSGoogle Scholar
  65. [65]
    Y. Wang, F.P. Huang, C.S. Li, B.H. Li, D.Y. Shao and J. Wang, Constraints on flavor-changing neutral-current Htq couplings from the signal of tH associated production with QCD next-to-leading order accuracy at the LHC, Phys. Rev. D 86 (2012) 094014 [arXiv:1208.2902] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Buckley et al., Constraining top quark effective theory in the LHC run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing top-Higgs non-standard interactions at the LHC, JHEP 07 (2012) 036 [Erratum ibid. 03 (2013) 032] [arXiv:1205.1065] [INSPIRE].
  69. [69]
    N. Greiner, S. Willenbrock and C. Zhang, Effective field theory for nonstandard top quark couplings, Phys. Lett. B 704 (2011) 218 [arXiv:1104.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  71. [71]
    H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Effective field theory of precision electroweak physics at one loop, Phys. Lett. B 724 (2013) 259 [arXiv:1304.1789] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on electroweak effective operators at one loop, Phys. Rev. D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE].ADSzbMATHGoogle Scholar
  73. [73]
    J. de Blas, M. Chala and J. Santiago, Renormalization group constraints on new top interactions from electroweak precision data, JHEP 09 (2015) 189 [arXiv:1507.00757] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    C. Zhang, Automating predictions for Standard Model effective field theory in MadGraph5_aMC@NLO, arXiv:1601.03994 [INSPIRE].
  80. [80]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  81. [81]
    B. Gripaios and D. Sutherland, An operator basis for the Standard Model with an added scalar singlet, JHEP 08 (2016) 103 [arXiv:1604.07365] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Banfi, A. Martin and V. Sanz, Probing top-partners in Higgs+jets, JHEP 08 (2014) 053 [arXiv:1308.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini and A. Wulzer, Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  89. [89]
    R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].ADSGoogle Scholar
  91. [91]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  92. [92]
    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    M.P. Rosello and M. Vos, Constraints on four-fermion interactions from the tt charge asymmetry at hadron colliders, Eur. Phys. J. C 76 (2016) 200 [arXiv:1512.07542] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  95. [95]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOthe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    C. Degrande, Automatic evaluation of UV and R 2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  101. [101]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  103. [103]
    L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    G. Passarino and M. Trott, The Standard Model Effective Field Theory and next to leading order, LHCHXSWG-DRAFT-INT-2016-005, CERN, Geneva Switzerland (2016).
  106. [106]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and non-interference for BSM amplitudes, arXiv:1607.05236 [INSPIRE].
  108. [108]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, Comments on the validity of the effective field theory approach to physics beyond the Standard Model, LHCHXSWG-DRAFT-INT-2016-001, CERN, Geneva Switzerland (2016).
  109. [109]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    G. Passarino, NLO inspired effective Lagrangians for Higgs physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  112. [112]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].
  113. [113]
    CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].
  114. [114]
    CMS collaboration, First results on Higgs to γγ at 13 TeV, CMS-PAS-HIG-15-005, CERN, Geneva Switzerland (2016).
  115. [115]
    ATLAS collaboration, Observation and measurement of Higgs boson decays to W W with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].
  116. [116]
    CMS collaboration, Measurement of Higgs boson production and properties in the W W decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  117. [117]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191] [INSPIRE].
  118. [118]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  119. [119]
    ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to τ leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].
  120. [120]
    CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, JHEP 05 (2014) 104 [arXiv:1401.5041] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Physics, Brookhaven National LaboratoryUptonU.S.A.

Personalised recommendations