Journal of High Energy Physics

, 2016:119 | Cite as

Higher spin black holes with soft hair

  • Daniel Grumiller
  • Alfredo PérezEmail author
  • Stefan Prohazka
  • David Tempo
  • Ricardo Troncoso
Open Access
Regular Article - Theoretical Physics


We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.


Black Holes Classical Theories of Gravity Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. [4]
    M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  6. [6]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. [8]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  9. [9]
    M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. [10]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. [11]
    A. Campoleoni and M. Henneaux, Asymptotic symmetries of three-dimensional higher-spin gravity: the metric approach, JHEP 03 (2015) 143 [arXiv:1412.6774] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. [13]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. [14]
    M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    C. Bunster, M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. [16]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. [17]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. [18]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    A. Pérez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  20. [20]
    A. Pérez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefzbMATHGoogle Scholar
  22. [22]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. [23]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  24. [24]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].MathSciNetzbMATHADSGoogle Scholar
  25. [25]
    M. Bañados, R. Canto and S. Theisen, Higher spin black holes in three dimensions: Remarks on asymptotics and regularity, Phys. Rev. D 94 (2016) 024002 [arXiv:1601.05827] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Chen, J. Long and Y.-n. Wang, Black holes in Truncated Higher Spin AdS 3 Gravity, JHEP 12 (2012) 052 [arXiv:1209.6185] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    T. Banks, The Super BMS Algebra, Scattering and Holography, arXiv:1403.3420 [INSPIRE].
  28. [28]
    G. Dvali, C. Gomez and D. Lüst, Classical Limit of Black Hole Quantum N-Portrait and BMS Symmetry, Phys. Lett. B 753 (2016) 173 [arXiv:1509.02114] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    M. Blau and M. O’Loughlin, Horizon Shells and BMS-like Soldering Transformations, JHEP 03 (2016) 029 [arXiv:1512.02858] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    A. Averin, G. Dvali, C. Gomez and D. Lüst, Gravitational Black Hole Hair from Event Horizon Supertranslations, JHEP 06 (2016) 088 [arXiv:1601.03725] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A. Kehagias and A. Riotto, BMS in Cosmology, JCAP 05 (2016) 059 [arXiv:1602.02653] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    C. Eling and Y. Oz, On the Membrane Paradigm and Spontaneous Breaking of Horizon BMS Symmetries, JHEP 07 (2016) 065 [arXiv:1605.00183] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    M.R. Setare and H. Adami, Near Horizon Symmetries of the Non-Extremal Black Hole Solutions of Generalized Minimal Massive Gravity, Phys. Lett. B 760 (2016) 411 [arXiv:1606.02273] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    M.R. Setare and H. Adami, The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity, arXiv:1606.05260 [INSPIRE].
  36. [36]
    A. Averin, G. Dvali, C. Gomez and D. Lüst, Goldstone origin of black hole hair from supertranslations and criticality, arXiv:1606.06260 [INSPIRE].
  37. [37]
    G. Barnich, C. Troessaert, D. Tempo and R. Troncoso, Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions, Phys. Rev. D 93 (2016) 084001 [arXiv:1512.05410] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Troessaert, D. Tempo and R. Troncoso, Asymptotically flat black holes and gravitational waves in three-dimensional massive gravity, in proceedings of 8th Aegean Summer School: Gravitational Waves: From Theory to Observations, Rethymno, Crete, Greece, June 29-July 04 2015 [arXiv:1512.09046] [INSPIRE].
  39. [39]
    H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Near Horizon Soft Hairs as Microstates of Three Dimensional Black Holes, arXiv:1607.00009 [INSPIRE].
  40. [40]
    A. Castro, E. Hijano and A. Lepage-Jutier, Unitarity Bounds in AdS 3 Higher Spin Gravity, JHEP 06 (2012) 001 [arXiv:1202.4467] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  41. [41]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  42. [42]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  43. [43]
    C. Krishnan, A. Raju, S. Roy and S. Thakur, Higher Spin Cosmology, Phys. Rev. D 89 (2014) 045007 [arXiv:1308.6741] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP 04 (2014) 020 [arXiv:1310.0837] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  45. [45]
    M. Gary, D. Grumiller, S. Prohazka and S.-J. Rey, Lifshitz Holography with Isotropic Scale Invariance, JHEP 08 (2014) 001 [arXiv:1406.1468] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    V. Breunhölder, M. Gary, D. Grumiller and S. Prohazka, Null warped AdS in higher spin gravity, JHEP 12 (2015) 021 [arXiv:1509.08487] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 Gravity in Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  49. [49]
    M. Gary, D. Grumiller, M. Riegler and J. Rosseel, Flat space (higher spin) gravity with chemical potentials, JHEP 01 (2015) 152 [arXiv:1411.3728] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    J. Matulich, A. Pérez, D. Tempo and R. Troncoso, Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics, JHEP 05 (2015) 025 [arXiv:1412.1464] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    H. Afshar et al., Soft hairy horizons in three spacetime dimensions, CECS-PHY-16/05.Google Scholar
  52. [52]
    O. Fuentealba, J. Matulich and R. Troncoso, Asymptotically flat structure of hypergravity in three spacetime dimensions, JHEP 10 (2015) 009 [arXiv:1508.04663] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  53. [53]
    M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Extended anti-de Sitter Hypergravity in 2+1 Dimensions and Hypersymmetry Bounds, arXiv:1512.08603 [INSPIRE].
  54. [54]
    O. Fuentealba, J. Matulich and R. Troncoso, Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond, JHEP 09 (2015) 003 [arXiv:1505.06173] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Hypersymmetry bounds and three-dimensional higher-spin black holes, JHEP 08 (2015) 021 [arXiv:1506.01847] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  56. [56]
    J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    M. Bañados, A. Castro, A. Faraggi and J.I. Jottar, Extremal Higher Spin Black Holes, JHEP 04 (2016) 077 [arXiv:1512.00073] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  58. [58]
    M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  59. [59]
    J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    A. Castro and E. Llabrés, Unravelling Holographic Entanglement Entropy in Higher Spin Theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  62. [62]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and \( {\mathcal{W}}_{\mathrm{N}} \) conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  63. [63]
    A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for General Relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    R.S. Johnson, A non-linear equation incorporating damping and dispersion, J. Fluid Mech. 42 (1970) 49.MathSciNetCrossRefzbMATHADSGoogle Scholar
  65. [65]
    Z. Feng, On explicit exact solutions to the compound Burgers-KdV equation, Phys. Lett. A 293 (2002) 57.MathSciNetCrossRefzbMATHADSGoogle Scholar
  66. [66]
    Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput. 182 (2006) 1048.MathSciNetzbMATHGoogle Scholar
  67. [67]
    M. Younis, Soliton solutions of fractional order KdV-Burgers’s equation, J. Adv. Phys. 3 (2014) 325.CrossRefGoogle Scholar
  68. [68]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  69. [69]
    M.R. Gaberdiel and R. Gopakumar, String Theory as a Higher Spin Theory, JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    H.-S. Tan, Aspects of Three-dimensional Spin-4 Gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  71. [71]
    M. Ferlaino, T. Hollowood and S.P. Kumar, Asymptotic symmetries and thermodynamics of higher spin black holes in AdS 3, Phys. Rev. D 88 (2013) 066010 [arXiv:1305.2011] [INSPIRE].ADSGoogle Scholar
  72. [72]
    G. Compère and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  73. [73]
    G. Compère, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    W. Li, F.-L. Lin and C.-W. Wang, Modular Properties of 3D Higher Spin Theory, JHEP 12 (2013) 094 [arXiv:1308.2959] [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    J. de Boer and J.I. Jottar, Boundary conditions and partition functions in higher spin AdS 3 /CFT 2, JHEP 04 (2016) 107 [arXiv:1407.3844] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  76. [76]
    A. Cabo-Bizet, E. Gava, V.I. Giraldo-Rivera and K.S. Narain, Black Holes in the 3D Higher Spin Theory and Their Quasi Normal Modes, JHEP 11 (2014) 013 [arXiv:1407.5203] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  77. [77]
    A. Cabo-Bizet and V.I. Giraldo-Rivera, About the phase space of SL(3) Black Holes, JHEP 03 (2015) 081 [arXiv:1407.8241] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  78. [78]
    W. Li and S. Theisen, Some aspects of holographic W-gravity, JHEP 08 (2015) 035 [arXiv:1504.07799] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  79. [79]
    L. Apolo, The covariant action of higher spin black holes in three dimensions, JHEP 05 (2016) 097 [arXiv:1511.01406] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  80. [80]
    L. Apolo and B. Sundborg, The Sky is the Limit: Free Boundary Conditions in AdS 3 Chern-Simons Theory, in proceedings of the International Workshop on Higher Spin Gauge Theories, Singapore, November 04-06 2015 [arXiv:1603.03213] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Daniel Grumiller
    • 1
  • Alfredo Pérez
    • 2
    Email author
  • Stefan Prohazka
    • 1
  • David Tempo
    • 2
  • Ricardo Troncoso
    • 2
  1. 1.Institute for Theoretical PhysicsTU WienViennaAustria
  2. 2.Centro de Estudios Científicos (CECs)ValdiviaChile

Personalised recommendations