Advertisement

Journal of High Energy Physics

, 2016:107 | Cite as

Full top quark mass dependence in Higgs boson pair production at NLO

  • S. Borowka
  • N. Greiner
  • G. HeinrichEmail author
  • S.P. Jones
  • M. Kerner
  • J. Schlenk
  • T. Zirke
Open Access
Regular Article - Theoretical Physics

Abstract

We study the effects of the exact top quark mass-dependent two-loop corrections to Higgs boson pair production by gluon fusion at the LHC and at a 100 TeV hadron collider. We perform a detailed comparison of the full next-to-leading order result to various approximations at the level of differential distributions and also analyse non-standard Higgs self-coupling scenarios. We find that the different next-to-leading order approximations differ from the full result by up to 50 percent in relevant differential distributions. This clearly stresses the importance of the full NLO result.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS, CMS collaboration, G. Aad et al., Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  4. [4]
    ATLAS collaboration, Higgs pair production in the \( H\left(\to \tau\ \tau \right)H\left(\to b\overline{b}\right) \) channel at the high-Luminosity LHC, ATL-PHYS-PUB-2015-046 (2015).
  5. [5]
    ATLAS collaboration, Prospects for measuring Higgs pair production in the channel \( H\left(\to \gamma \gamma \right)H\left(\to b\overline{b}\right) \) using the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2014-019 (2014).
  6. [6]
    C. Dontardo et al., Technical proposal for the Phase-II upgrade of the CMS detector, CERN-LHCC-2015-010 (2015).
  7. [7]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}\gamma \gamma \) final state using pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-004 (2016).
  8. [8]
    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].
  9. [9]
    ATLAS collaboration, Searches for Higgs boson pair production in the hhbbτ τ, γγW W , γγbb, bbbb channels with the ATLAS detector, Phys. Rev. D 92 (2015) 092004 [arXiv:1509.04670] [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state using pp collision data at \( \sqrt{s}=8 \) TeV from the ATLAS detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  11. [11]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 94 (2016) 052002 [arXiv:1606.04782] [INSPIRE].
  12. [12]
    CMS Collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 13 TeV, CMS-PAS-HIG-16-002 (2016).
  13. [13]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeVwith the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  15. [15]
    ATLAS collaboration, Search for Higgs boson pair production in the final state of γγWW (→ lνjj) using 13.3 fb −1 of pp collision data recorded at \( \sqrt{s}= 13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-071 (2016).
  16. [16]
    CMS collaboration, Search for Higgs boson pair production in the \( b\overline{b} l\nu l\nu \) final state at \( \sqrt{s}=13 \) TeV,CMS-PAS-HIG-16-024 (2016).
  17. [17]
    CMS collaboration, Search for non-resonant Higgs boson pair production in the bbtautau final state using 2016 data, CMS-PAS-HIG-16-028 (2016).
  18. [18]
    CMS collaboration, Search for resonant Higgs boson pair production in the \( b\overline{b} l\nu l\nu \) final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-011 (2016).
  19. [19]
    CMS Collaboration, Search for resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state, CMS-PAS-HIG-16-013 (2016).
  20. [20]
    CMS Collaboration, Search for non-resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state, CMS-PAS-HIG-16-012 (2016).
  21. [21]
    CMS Collaboration, Model independent search for Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) final state, CMS-PAS-HIG-15-013 (2015).Google Scholar
  22. [22]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G.P. Salam and V. Sanz, Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — Selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.J. Dolan, C. Englert, N. Greiner and M. Spannowsky, Further on up the road: hhjj production at the LHC, Phys. Rev. Lett. 112 (2014) 101802 [arXiv:1310.1084] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Q. Li, Q.-S. Yan and X. Zhao, Higgs pair production: improved description by matrix element matching, Phys. Rev. D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Maierhöfer and A. Papaefstathiou, Higgs boson pair production merged to one jet, JHEP 03 (2014) 126 [arXiv:1401.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Slawinska, W. van den Wollenberg, B. van Eijk and S. Bentvelsen, Phenomenology of the trilinear Higgs coupling at proton-proton colliders, arXiv:1408.5010 [INSPIRE].
  34. [34]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].
  35. [35]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.A. Dicus, C. Kao and W.W. Repko, Interference effects and the use of Higgs boson pair production to study the Higgs trilinear self coupling, Phys. Rev. D 92 (2015) 093003 [arXiv:1504.02334] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Papaefstathiou, Discovering Higgs boson pair production through rare final states at a 100 TeV collider, Phys. Rev. D 91 (2015) 113016 [arXiv:1504.04621] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R. Gröber, M. Mühlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Dawson, A. Ismail and I. Low, What’s in the loop? The anatomy of double Higgs production, Phys. Rev. D 91 (2015) 115008 [arXiv:1504.05596] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M.J. Dolan, C. Englert, N. Greiner, K. Nordstrom and M. Spannowsky, hhjj production at the LHC, Eur. Phys. J. C 75 (2015) 387 [arXiv:1506.08008] [INSPIRE].
  42. [42]
    A. Carvalho, M. Dall’Osso, T. Dorigo, F. Goertz, C.A. Gottardo and M. Tosi, Higgs Pair Production: Choosing Benchmarks With Cluster Analysis, JHEP 04 (2016) 126 [arXiv:1507.02245] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Dawson and I.M. Lewis, NLO corrections to double Higgs boson production in the Higgs singlet model, Phys. Rev. D 92 (2015) 094023 [arXiv:1508.05397] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Q.-H. Cao, Y. Liu and B. Yan, Measuring trilinear Higgs coupling in W HH and ZHH productions at the HL-LHC, arXiv:1511.03311 [INSPIRE].
  46. [46]
    J.K. Behr, D. Bortoletto, J.A. Frost, N.P. Hartland, C. Issever and J. Rojo, Boosting Higgs pair production in the bbbb final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: ggh and hγγ,arXiv:1607.03773[INSPIRE].
  48. [48]
    G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, arXiv:1607.04251 [INSPIRE].
  49. [49]
    H.T. Li and J. Wang, Fully differential Higgs pair production in association with a W boson at next-to-next-to-leading order in QCD, arXiv:1607.06382 [INSPIRE].
  50. [50]
    S. Kanemura, M. Kikuchi and K. Yagyu, One-loop corrections to the Higgs self-couplings in the singlet extension, arXiv:1608.01582 [INSPIRE].
  51. [51]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  54. [54]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  55. [55]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [arXiv:1604.06447] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Jacob and G.C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7 (1959) 404 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    C. Degrande et al., Effective field theory: a modern approach to anomalous couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Spira, Effective multi-Higgs couplings to gluons, JHEP 10 (2016) 026 [arXiv:1607.05548] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the standard model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  72. [72]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  74. [74]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  75. [75]
    A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  76. [76]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  78. [78]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  79. [79]
    R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].
  80. [80]
    R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138 [hep-ph/0311145] [INSPIRE].
  81. [81]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  82. [82]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].
  83. [83]
    T. Gehrmann, S. Guns and D. Kara, The rare decay HZγ in perturbative QCD, JHEP 09 (2015) 038 [arXiv:1505.00561] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Next-to-leading order QCD corrections to the decay width H, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  88. [88]
    A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    A. von Manteuffel, E. Panzer and R.M. Schabinger, On the computation of form factors in massless QCD with finite master integrals, Phys. Rev. D 93 (2016) 125014 [arXiv:1510.06758] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  92. [92]
    D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62 (2000) 014009 [hep-ph/9910292] [INSPIRE].
  93. [93]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An Algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].
  94. [94]
    Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [INSPIRE].
  95. [95]
    Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient numerical evaluation of Feynman integrals, Chin. Phys. C 40 (2016) 033103 [arXiv:1508.02512] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J. Dick, F.Y. Kuo and I.H. Sloan, High-dimensional integration: the quasi-monte carlo way, Acta Numerica 22 (2013) 133.MathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, Math. Comput. 75 (2006) 903.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    G.P. Lepage, VEGAS: an adaptive multidimensional integration program, CLNS-80/447 (1980).Google Scholar
  99. [99]
    S.P. Jones, Automation of 2-loop amplitude calculations, PoS (LL2016) 069 [arXiv:1608.03846] [INSPIRE].
  100. [100]
    M. Kerner, Next-to-leading order corrections to Higgs boson pair production in gluon fusion, PoS (LL2016) 023 [arXiv:1608.03851] [INSPIRE].
  101. [101]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
  102. [102]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of order αα s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
  103. [103]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
  104. [104]
    M. Steinhauser, MATAD: a program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].
  105. [105]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  106. [106]
    C. Anastasiou et al., Handbook of LHC Higgs cross sections: 4.Deciphering the nature of the Higgs sector, LHC Higgs Cross section Working Group report (2016).Google Scholar
  107. [107]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  109. [109]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  111. [111]
    F. Caola, S. Forte, S. Marzani, C. Muselli and G. Vita, The Higgs transverse momentu spectrum with finite quark masses beyond leading order, JHEP 08 (2016) 150 [arXiv:1606.04100] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    N. Greiner, S. Hoeche, G. Luisoni, M. Schonherr and J.-C. Winter, Full mass dependence in Higgs boson production in association with jets at the LHC and FCC, arXiv:1608.01195 [INSPIRE].
  113. [113]
    M.L. Mangano et al., Physics at a 100 TeV pp collider: standard model processes, arXiv:1607.01831 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • S. Borowka
    • 1
  • N. Greiner
    • 1
  • G. Heinrich
    • 2
    Email author
  • S.P. Jones
    • 2
  • M. Kerner
    • 2
  • J. Schlenk
    • 2
  • T. Zirke
    • 2
  1. 1.Institute for PhysicsUniversität ZürichZürichSwitzerland
  2. 2.Max-Planck-Institute for PhysicsMünchenGermany

Personalised recommendations