Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality
- 78 Downloads
- 1 Citations
Abstract
We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete \( {\mathbb{Z}}_2 \) symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar (\( {\mathbb{Z}}_2 \) or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.
Keywords
AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmasNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [2]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
- [4]J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic duality in condensed matter systems, Cambridge University Press, (2015).Google Scholar
- [5]S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [6]S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [7]G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [8]N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].ADSGoogle Scholar
- [9]G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
- [10]T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, ‘Deconfined’ quantum critical points, Science 303 (2004) 1490 [cond-mat/0311326].
- [11]T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M.P.A. Fisher, Quantum criticality beyond the Ginzburg-Landau-Wilson paradigm, Phys. Rev. B 70 (2004) 144407 [cond-mat/0312617].
- [12]H.v. Löhneysen, A. Rosch, M. Vojta and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79 (2007) 1015 [INSPIRE].
- [13]T. Senthil, S. Sachdev and M. Vojta, Fractionalized Fermi liquids, Phys. Rev. Lett. 90 (2003) 216403 [cond-mat/0209144] [INSPIRE].
- [14]T. Senthil, S. Sachdev and M. Vojta, Quanutm phase transitions out of a heavy Fermi liquid Physica B 359 (2005) 9 [cond-mat/0409033].
- [15]T. Senthil, M. Vojta and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69 (2004) 035111 [cond-mat/0305193] [INSPIRE].
- [16]S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
- [17]I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [18]S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].ADSMathSciNetGoogle Scholar
- [19]O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 106002 [arXiv:1207.3352] [INSPIRE].ADSGoogle Scholar
- [20]O. DeWolfe, S.S. Gubser and C. Rosen, Fermionic response in a zero entropy state of \( \mathcal{N} \) = 4 super-Yang-Mills, Phys. Rev. D 91 (2015) 046011 [arXiv:1312.7347] [INSPIRE].ADSGoogle Scholar
- [21]U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, JHEP 01 (2011) 086 [arXiv:1007.0500] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [22]U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
- [23]U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
- [24]C. Charmousis, Dilaton space-times with a Liouville potential, Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [25]C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [26]B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [27]B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar
- [28]S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
- [29]S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [30]K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [31]K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [32]A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
- [33]B. Batell and T. Gherghetta, Dynamical Soft-Wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [INSPIRE].ADSMathSciNetGoogle Scholar
- [34]J.I. Kapusta and T. Springer, Potentials for soft wall AdS/QCD, Phys. Rev. D 81 (2010) 086009 [arXiv:1001.4799] [INSPIRE].ADSGoogle Scholar
- [35]M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [36]A. Salvio, Transitions in dilaton holography with global or local symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [37]Y. Liu and Y.-W. Sun, Holographic superconductors from Einstein-Maxwell-dilaton gravity, JHEP 07 (2010) 099 [arXiv:1006.2726] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [38]M. Cadoni, P. Pani and M. Serra, Infrared behavior of scalar condensates in effective holographic theories, JHEP 06 (2013) 029 [arXiv:1304.3279] [INSPIRE].ADSCrossRefGoogle Scholar
- [39]A. Salvio, Holographic superfluids and superconductors in dilaton-gravity, JHEP 09 (2012) 134 [arXiv:1207.3800] [INSPIRE].ADSCrossRefGoogle Scholar
- [40]Z. Fan, Holographic superconductors with hidden Fermi surfaces, arXiv:1311.4110 [INSPIRE].
- [41]D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [42]M. Blake, A. Donos and D. Tong, Holographic charge oscillations, JHEP 04 (2015) 019 [arXiv:1412.2003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [43]G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
- [44]T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar