Advertisement

Journal of High Energy Physics

, 2016:101 | Cite as

Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

  • The HAL QCD collaboration
  • T. IritaniEmail author
  • T. Doi
  • S. Aoki
  • S. Gongyo
  • T. Hatsuda
  • Y. Ikeda
  • T. Inoue
  • N. Ishii
  • K. Murano
  • H. Nemura
  • K. Sasaki
Open Access
Regular Article - Theoretical Physics

Abstract

Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0.51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

Keywords

Lattice QCD Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi and A. Ukawa, Helium nuclei, deuteron and dineutron in 2 + 1 flavor lattice QCD, Phys. Rev. D 86 (2012) 074514 [arXiv:1207.4277] [INSPIRE].ADSGoogle Scholar
  3. [3]
    T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi and A. Ukawa, Study of quark mass dependence of binding energy for light nuclei in 2 + 1 flavor lattice QCD, Phys. Rev. D 92 (2015) 014501 [arXiv:1502.04182] [INSPIRE].ADSGoogle Scholar
  4. [4]
    N. Ishii, S. Aoki and T. Hatsuda, The Nuclear Force from Lattice QCD, Phys. Rev. Lett. 99 (2007) 022001 [nucl-th/0611096] [INSPIRE].
  5. [5]
    S. Aoki, T. Hatsuda and N. Ishii, Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics, Comput. Sci. Dis. 1 (2008) 015009 [arXiv:0805.2462] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    S. Aoki, T. Hatsuda and N. Ishii, Theoretical Foundation of the Nuclear Force in QCD and its applications to Central and Tensor Forces in Quenched Lattice QCD Simulations, Prog. Theor. Phys. 123 (2010) 89 [arXiv:0909.5585] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Aoki for the HAL QCD collaboration, Hadron interactions in lattice QCD, Prog. Part. Nucl. Phys. 66 (2011) 687 [arXiv:1107.1284] [INSPIRE].
  8. [8]
    HAL QCD collaboration, S. Aoki et al., Lattice QCD approach to Nuclear Physics, Prog. Theor. Exp. Phys. 2012 (2012) 01A105 [arXiv:1206.5088] [INSPIRE].
  9. [9]
    HAL QCD collaboration, N. Ishii et al., Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice, Phys. Lett. B 712 (2012) 437 [arXiv:1203.3642] [INSPIRE].
  10. [10]
    HAL QCD collaboration, T. Inoue et al., Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD, Phys. Rev. Lett. 106 (2011) 162002 [arXiv:1012.5928] [INSPIRE].
  11. [11]
    HAL QCD collaboration, T. Inoue et al., Two-Baryon Potentials and H-Dibaryon from 3-flavor Lattice QCD Simulations, Nucl. Phys. A 881 (2012) 28 [arXiv:1112.5926] [INSPIRE].
  12. [12]
    G. Parisi, The Strategy for Computing the Hadronic Mass Spectrum, Phys. Rept. 103 (1984) 203 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.P. Lepage, The analysis of algorithms for lattice field theory, in From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., June 5-30 1989, T. Degrand and D. Toussaint eds., World Scientific, Singapore (1990).Google Scholar
  14. [14]
    JLQCD and CP-PACS collaborations, S. Aoki et al., Nonperturbative O(a) improvement of the Wilson quark action with the RG-improved gauge action using the Schrödinger functional method, Phys. Rev. D 73 (2006) 034501 [hep-lat/0508031] [INSPIRE].
  15. [15]
    T. Doi and M.G. Endres, Unified contraction algorithm for multi-baryon correlators on the lattice, Comput. Phys. Commun. 184 (2013) 117 [arXiv:1205.0585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    PACS-CS collaboration, T. Yamazaki, Y. Kuramashi and A. Ukawa, Helium Nuclei in Quenched Lattice QCD, Phys. Rev. D 81 (2010) 111504 [arXiv:0912.1383] [INSPIRE].
  17. [17]
    W. Detmold and K. Orginos, Nuclear correlation functions in lattice QCD, Phys. Rev. D 87 (2013) 114512 [arXiv:1207.1452] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Günther, B.C. Toth and L. Varnhorst, Recursive approach to determine correlation functions in multibaryon systems, Phys. Rev. D 87 (2013) 094513 [arXiv:1301.4895] [INSPIRE].ADSGoogle Scholar
  19. [19]
    H. Nemura, Instructive discussion of an effective block algorithm for baryon-baryon correlators, Comput. Phys. Commun. 207 (2016) 91 [arXiv:1510.00903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    T. Blum, T. Izubuchi and E. Shintani, New class of variance-reduction techniques using lattice symmetries, Phys. Rev. D 88 (2013) 094503 [arXiv:1208.4349] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung and C. Lehner, Covariant approximation averaging, Phys. Rev. D 91 (2015) 114511 [arXiv:1402.0244] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Iritani et al., in preparation.Google Scholar
  23. [23]
    PACS-CS collaboration, T. Yamazaki, Y. Kuramashi and A. Ukawa, Two-Nucleon Bound States in Quenched Lattice QCD, Phys. Rev. D 84 (2011) 054506 [arXiv:1105.1418] [INSPIRE].
  24. [24]
    NPLQCD collaboration, S.R. Beane et al., High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions, Phys. Rev. D 81 (2010) 054505 [arXiv:0912.4243] [INSPIRE].
  25. [25]
    NPLQCD collaboration, S.R. Beane et al., Evidence for a Bound H-dibaryon from Lattice QCD, Phys. Rev. Lett. 106 (2011) 162001 [arXiv:1012.3812] [INSPIRE].
  26. [26]
    NPLQCD collaboration, S.R. Beane et al., The Deuteron and Exotic Two-Body Bound States from Lattice QCD, Phys. Rev. D 85 (2012) 054511 [arXiv:1109.2889] [INSPIRE].
  27. [27]
    S.R. Beane et al., Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics, Phys. Rev. Lett. 109 (2012) 172001 [arXiv:1204.3606] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    NPLQCD collaboration, S.R. Beane et al., Light Nuclei and Hypernuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry, Phys. Rev. D 87 (2013) 034506 [arXiv:1206.5219] [INSPIRE].
  29. [29]
    NPLQCD collaboration, S.R. Beane et al., Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry, Phys. Rev. C 88 (2013) 024003 [arXiv:1301.5790] [INSPIRE].
  30. [30]
    S.R. Beane et al., Magnetic moments of light nuclei from lattice quantum chromodynamics, Phys. Rev. Lett. 113 (2014) 252001 [arXiv:1409.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.R. Beane, W. Detmold, K. Orginos and M.J. Savage, Uncertainty Quantification in Lattice QCD Calculations for Nuclear Physics, J. Phys. G 42 (2015) 034022 [arXiv:1410.2937] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    NPLQCD collaboration, S.R. Beane et al., Ab initio Calculation of the npdγ Radiative Capture Process, Phys. Rev. Lett. 115 (2015) 132001 [arXiv:1505.02422] [INSPIRE].
  33. [33]
    NPLQCD collaboration, E. Chang et al., Magnetic structure of light nuclei from lattice QCD, Phys. Rev. D 92 (2015) 114502 [arXiv:1506.05518] [INSPIRE].
  34. [34]
    NPLQCD collaboration, W. Detmold et al., Unitary Limit of Two-Nucleon Interactions in Strong Magnetic Fields, Phys. Rev. Lett. 116 (2016) 112301 [arXiv:1508.05884] [INSPIRE].
  35. [35]
    NPLQCD collaboration, K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang and W. Detmold, Two nucleon systems at m π ∼ 450 MeV from lattice QCD, Phys. Rev. D 92 (2015) 114512 [arXiv:1508.07583] [INSPIRE].
  36. [36]
    E. Berkowitz et al., Two-Nucleon Higher Partial-Wave Scattering from Lattice QCD, arXiv:1508.00886 [INSPIRE].
  37. [37]
    H.-W. Lin, Review of Baryon Spectroscopy in Lattice QCD, Chin. J. Phys. 49 (2011) 827 [arXiv:1106.1608] [INSPIRE].Google Scholar
  38. [38]
    T. Iritani et al., in preparation.Google Scholar
  39. [39]
  40. [40]
  41. [41]
    Columbia Physics System (CPS), http://usqcd-software.github.io/CPS.html.
  42. [42]
  43. [43]
    M. Schröck and H. Vogt, Coulomb, Landau and Maximally Abelian Gauge Fixing in Lattice QCD with Multi-GPUs, Comput. Phys. Commun. 184 (2013) 1907 [arXiv:1212.5221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Boku et al., Multi-block/multi-core SSOR preconditioner for the QCD quark solver for K computer, PoS(LATTICE 2012)188 [arXiv:1210.7398] [INSPIRE].
  45. [45]
    M. Terai et al., Performance Tuning of a Lattice QCD code on a node of the K computer (in Japanese), IPSJ Trans. ACS 6 (2013) 43.Google Scholar
  46. [46]
    HAL QCD collaboration, B. Charron, A comparative study of two lattice approaches to two-body systems, PoS(LATTICE 2013)223 [arXiv:1312.1032] [INSPIRE].
  47. [47]
    B. Charron et al., in preparation.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • The HAL QCD collaboration
  • T. Iritani
    • 1
    Email author
  • T. Doi
    • 2
  • S. Aoki
    • 3
    • 4
  • S. Gongyo
    • 5
  • T. Hatsuda
    • 2
    • 6
  • Y. Ikeda
    • 2
    • 7
  • T. Inoue
    • 8
  • N. Ishii
    • 7
  • K. Murano
    • 7
  • H. Nemura
    • 4
  • K. Sasaki
    • 3
    • 4
  1. 1.Department of Physics and AstronomyStony Brook UniversityStony BrookU.S.A.
  2. 2.Theoretical Research Division, Nishina Center, RIKENWakoJapan
  3. 3.Center for Gravitational Physics, Yukawa Institute for Theoretical PhysicsKyoto UniversitySakyo-kuJapan
  4. 4.Center for Computational SciencesUniversity of TsukubaTsukubaJapan
  5. 5.CNRS, Laboratoire de Mathématiques et Physique ThéoriqueUniversitéde ToursToursFrance
  6. 6.iTHES Research Group, RIKENWakoJapan
  7. 7.Research Center for Nuclear Physics (RCNP)Osaka UniversityIbarakiJapan
  8. 8.Nihon University, College of Bioresource SciencesFujisawaJapan

Personalised recommendations