Bulk local states and crosscaps in holographic CFT

Abstract

In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. We also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoro symmetry.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Y. Nakayama and H. Ooguri, Bulk locality and boundary creating operators, JHEP 10 (2015) 114 [arXiv:1507.04130] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    H. Verlinde, Poking holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069 [INSPIRE].

  3. [3]

    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous multiscale entanglement renormalization ansatz as holographic surface-state correspondence, Phys. Rev. Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    N. Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].

  6. [6]

    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. [7]

    I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    D. Kabat and G. Lifschytz, Decoding the hologram: scalar fields interacting with gravity, Phys. Rev. D 89 (2014) 066010 [arXiv:1311.3020] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    D. Kabat and G. Lifschytz, Bulk equations of motion from CFT correlators, JHEP 09 (2015) 059 [arXiv:1505.03755] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. [12]

    D. Kabat and G. Lifschytz, Locality, bulk equations of motion and the conformal bootstrap, arXiv:1603.06800 [INSPIRE].

  13. [13]

    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

  14. [14]

    O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional N = (2, 0) theories on AdS 5 × S 1, JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    D. Fioravanti, G. Pradisi and A. Sagnotti, Sewing constraints and nonorientable open strings, Phys. Lett. B 321 (1994) 349 [hep-th/9311183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    Y. Nakayama, Bootstrapping critical Ising model on three-dimensional real projective space, Phys. Rev. Lett. 116 (2016) 141602 [arXiv:1601.06851] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    G. Pradisi, A. Sagnotti and Y.S. Stanev, Planar duality in SU(2) WZW models, Phys. Lett. B 354 (1995) 279 [hep-th/9503207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Maloney and S.F. Ross, Holography on non-orientable surfaces, Class. Quant. Grav. 33 (2016) 185006 [arXiv:1603.04426] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    Y. Nakayama, Is boundary conformal in CFT?, Phys. Rev. D 87 (2013) 046005 [arXiv:1210.6439] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Nakayama.

Additional information

ArXiv ePrint: 1605.00334

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y., Ooguri, H. Bulk local states and crosscaps in holographic CFT. J. High Energ. Phys. 2016, 85 (2016). https://doi.org/10.1007/JHEP10(2016)085

Download citation

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Space-Time Symmetries