Einstein-Yang-Mills from pure Yang-Mills amplitudes

  • Dhritiman Nandan
  • Jan Plefka
  • Oliver Schlotterer
  • Congkao Wen
Open Access
Regular Article - Theoretical Physics

Abstract

We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

Keywords

Field Theories in Higher Dimensions Scattering Amplitudes Supersymmetric gauge theory 

References

  1. [1]
    H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  4. [4]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  6. [6]
    Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Absence of three-loop four-point divergences in N = 4 supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of N =4 supergravity at four loops,Phys. Rev. Lett. 111(2013) 231302 [arXiv:1309.2498] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in N = 5 supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  11. [11]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  12. [12]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  13. [13]
    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Y.-X. Chen, Y.-J. Du and B. Feng, On tree amplitudes with gluons coupled to gravitons, JHEP 01 (2011) 081 [arXiv:1011.1953] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Y.-X. Chen, Y.-J. Du and B. Feng, A proof of the explicit minimal-basis expansion of tree amplitudes in gauge field theory, JHEP 02 (2011) 112 [arXiv:1101.0009] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K.G. Selivanov, SD perturbiner in Yang-Mills + gravity, Phys. Lett. B 420 (1998) 274 [hep-th/9710197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    K.G. Selivanov, Gravitationally dressed Parke-Taylor amplitudes, Mod. Phys. Lett. A 12 (1997) 3087 [hep-th/9711111] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, arXiv:1511.01740 [INSPIRE].
  22. [22]
    M. Chiodaroli, Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities, arXiv:1607.04129 [INSPIRE].
  23. [23]
    S. Stieberger and T.R. Taylor, New relations for Einstein-Yang-Mills amplitudes, Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    S. Stieberger and T.R. Taylor, Disk scattering of open and closed strings (I), Nucl. Phys. B 903 (2016) 104 [arXiv:1510.01774] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
  26. [26]
    J.M. Henn and J.C. Plefka, Scattering amplitudes in gauge theories, Lect. Notes Phys. 883 (2014) 1 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H. Elvang and Y.-T. Huang, Scattering amplitudes, Cambridge University Press, Cambridge U.K. (2015) [arXiv:1308.1697] [INSPIRE].MATHGoogle Scholar
  28. [28]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J.M. Drummond, M. Spradlin, A. Volovich and C. Wen, Tree-level amplitudes in N = 8 supergravity, Phys. Rev. D 79 (2009) 105018 [arXiv:0901.2363] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N =4 super Yang-Mills S-matrix, Phys. Rev. D 78(2008) 125005 [arXiv:0807.4097] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L.J. Dixon, J.M. Henn, J. Plefka and T. Schuster, All tree-level amplitudes in massless QCD, JHEP 01 (2011) 035 [arXiv:1010.3991] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    J.L. Bourjaily, Efficient tree-amplitudes in N = 4: automatic BCFW recursion in Mathematica, arXiv:1011.2447 [INSPIRE].
  36. [36]
    T. Schuster, Color ordering in QCD, Phys. Rev. D 89 (2014) 105022 [arXiv:1311.6296] [INSPIRE].ADSGoogle Scholar
  37. [37]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C.R. Mafra and O. Schlotterer, PSS: from pure spinor superspace to components webpage, http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html.
  46. [46]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New ambitwistor string theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    W. Siegel, Amplitudes for left-handed strings, arXiv:1512.02569 [INSPIRE].
  55. [55]
    Y.-T. Huang, W. Siegel and E.Y. Yuan, Factorization of chiral string amplitudes, JHEP 09 (2016) 101 [arXiv:1603.02588] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, arXiv:1606.05636 [INSPIRE].
  57. [57]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  59. [59]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. He and E.Y. Yuan, One-loop scattering equations and amplitudes from forward limit, Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Cardona and H. Gomez, Elliptic scattering equations, JHEP 06 (2016) 094 [arXiv:1605.01446] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Cardona and H. Gomez, CHY-graphs on a torus, arXiv:1607.01871 [INSPIRE].
  65. [65]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    H. Gomez and E.Y. Yuan, N -point tree-level scattering amplitude in the new Berkovits’ string, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    C.R. Mafra, Berends-Giele recursion for double-color-ordered amplitudes, JHEP 07 (2016) 080 [arXiv:1603.09731] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  71. [71]
    C. Cardona, B. Feng, H. Gomez and R. Huang, Cross-ratio identities and higher-order poles of CHY-integrand, JHEP 09 (2016) 133 [arXiv:1606.00670] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F. Cachazo and H. Gomez, Computation of contour integrals on \( {\mathrm{\mathcal{M}}}_{0,n} \), JHEP 04 (2016) 108 [arXiv:1505.03571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    H. Gomez, Λ scattering equations, JHEP 06 (2016) 101 [arXiv:1604.05373] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Y.-T. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    L. de la Cruz, A. Kniss and S. Weinzierl, The CHY representation of tree-level primitive QCD amplitudes, JHEP 11 (2015) 217 [arXiv:1508.06557] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
  79. [79]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Dhritiman Nandan
    • 1
  • Jan Plefka
    • 1
  • Oliver Schlotterer
    • 2
  • Congkao Wen
    • 3
  1. 1.Institut für Physik and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany
  3. 3.I.N.F.N. Sezione di Roma Tor VergataRomaItaly

Personalised recommendations