Advertisement

Fermion masses through four-fermion condensates

  • Venkitesh AyyarEmail author
  • Shailesh Chandrasekharan
Open Access
Regular Article - Theoretical Physics

Abstract

Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

Keywords

Lattice Quantum Field Theory Spontaneous Symmetry Breaking Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Slagle, Y.-Z. You and C. Xu, Exotic quantum phase transitions of strongly interacting topological insulators, Phys. Rev. B 91 (2015) 115121 [arXiv:1409.7401] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z.Y. Meng and Z.-Y. Lu, Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states, Phys. Rev. B 93 (2016) 115150 [arXiv:1508.06389] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V. Ayyar and S. Chandrasekharan, Massive fermions without fermion bilinear condensates, Phys. Rev. D 91 (2015) 065035 [arXiv:1410.6474] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Catterall, Fermion mass without symmetry breaking, JHEP 01 (2016) 121 [arXiv:1510.04153] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Ayyar and S. Chandrasekharan, Origin of fermion masses without spontaneous symmetry breaking, Phys. Rev. D 93 (2016) 081701 [arXiv:1511.09071] [INSPIRE].ADSGoogle Scholar
  6. [6]
    Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z.Y. Meng and Z.-Y. Lu, Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking, arXiv:1603.08376 [INSPIRE].
  7. [7]
    J. Stern, Two alternatives of spontaneous chiral symmetry breaking in QCD, hep-ph/9801282 [INSPIRE].
  8. [8]
    I.I. Kogan, A. Kovner and M.A. Shifman, Chiral symmetry breaking without bilinear condensates, unbroken axial Z N symmetry and exact QCD inequalities, Phys. Rev. D 59 (1999) 016001 [hep-ph/9807286] [INSPIRE].
  9. [9]
    T. Kanazawa, Chiral symmetry breaking with no bilinear condensate revisited, JHEP 10 (2015) 010 [arXiv:1507.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  11. [11]
    S.R. Coleman and E. Witten, Chiral Symmetry Breakdown in Large-N Chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Banks, On lattice definitions of chiral gauge theories and the problem of anomalies, Phys. Lett. B 272 (1991) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Banks and A. Dabholkar, Decoupling a fermion whose mass comes from a Yukawa coupling: Nonperturbative considerations, Phys. Rev. D 46 (1992) 4016 [hep-lat/9204017] [INSPIRE].
  14. [14]
    A. Hasenfratz and T. Neuhaus, Nonperturbative Study of the Strongly Coupled Scalar Fermion Model, Phys. Lett. B 220 (1989) 435 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Hasenfratz, W.-q. Liu and T. Neuhaus, Phase Structure and Critical Points in a Scalar Fermion Model, Phys. Lett. B 236 (1990) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I.-H. Lee, J. Shigemitsu and R.E. Shrock, Study of Different Lattice Formulations of a Yukawa Model With a Real Scalar Field, Nucl. Phys. B 334 (1990) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Bock, A.K. De, K. Jansen, J. Jersak, T. Neuhaus and J. Smit, Phase Diagram of a Lattice SU(2) × SU(2) Scalar Fermion Model With Naive and Wilson Fermions, Nucl. Phys. B 344 (1990) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W. Bock and A.K. De, Unquenched Investigation of Fermion Masses in a Chiral Fermion Theory on the Lattice, Phys. Lett. B 245 (1990) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.F.L. Golterman and D.N. Petcher, Decoupling of Doublers and the Phase Diagram of Lattice Chiral Fermions for Strong Wilson-Yukawa Coupling, Phys. Lett. B 247 (1990) 370 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Gerhold and K. Jansen, The Phase structure of a chirally invariant lattice Higgs-Yukawa model — numerical simulations, JHEP 10 (2007) 001 [arXiv:0707.3849] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bulava et al., Study of the Higgs-Yukawa theory in the strong-Yukawa coupling regime, PoS(LATTICE 2011)075 [arXiv:1111.4544] [INSPIRE].
  22. [22]
    J. Shigemitsu, Higgs-Yukawa chiral models, Nucl. Phys. Proc. Suppl. B 20 (1991) 515.ADSCrossRefGoogle Scholar
  23. [23]
    C. Wu, Competing Orders in One-Dimensional Spin 3/2 Fermionic Systems, Phys. Rev. Lett. 95 (2005) 266404 [cond-mat/0409247] [INSPIRE].
  24. [24]
    E. Eichten and J. Preskill, Chiral Gauge Theories on the Lattice, Nucl. Phys. B 268 (1986) 179 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.F.L. Golterman, D.N. Petcher and E. Rivas, Absence of chiral fermions in the Eichten-Preskill model, Nucl. Phys. B 395 (1993) 596 [hep-lat/9206010] [INSPIRE].
  26. [26]
    J.L. Alonso, P. Boucaud, V. Martin-Mayor and A.J. van der Sijs, Phase diagram and quasiparticles of a lattice SU(2) scalar fermion model in (2+1)-dimensions, Phys. Rev. D 61 (2000) 034501 [cond-mat/9907288] [INSPIRE].
  27. [27]
    T. Senthil, Symmetry Protected Topological phases of Quantum Matter, Ann. Rev. Condensed Matter Phys. 6 (2015) 299 [arXiv:1405.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].
  30. [30]
    M.F.L. Golterman, K. Jansen and D.B. Kaplan, Chern-Simons currents and chiral fermions on the lattice, Phys. Lett. B 301 (1993) 219 [hep-lat/9209003] [INSPIRE].
  31. [31]
    D.B. Kaplan and M. Schmaltz, Supersymmetric Yang-Mills theories from domain wall fermions, Chin. J. Phys. 38 (2000) 543 [hep-lat/0002030] [INSPIRE].
  32. [32]
    L. Fidkowski and A. Kitaev, The effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81 (2010) 134509 [arXiv:0904.2197] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) 075103 [arXiv:1008.4138].ADSCrossRefGoogle Scholar
  34. [34]
    X.-L. Qi, A new class of (2+1)-dimensional topological superconductors with \( {\mathbb{Z}}_8 \) topological classification, New J. Phys. 15 (2013) 065002 [arXiv:1202.3983].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L. Fidkowski, X. Chen and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev. X 3 (2013) 041016 [arXiv:1305.5851] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    T. Morimoto, A. Furusaki and C. Mudry, Breakdown of the topological classification \( \mathbb{Z} \) for gapped phases of noninteracting fermions by quartic interactions, Phys. Rev. B 92 (2015) 125104 [arXiv:1505.06341] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89 (2014) 195124 [arXiv:1401.1142] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    X.-G. Wen, A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model, Chin. Phys. Lett. 30 (2013) 111101 [arXiv:1305.1045] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y.-Z. You and C. Xu, Interacting Topological Insulator and Emergent Grand Unified Theory, Phys. Rev. B 91 (2015) 125147 [arXiv:1412.4784] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. You, Y. BenTov and C. Xu, Interacting Topological Superconductors and possible Origin of 16n Chiral Fermions in the Standard Model, arXiv:1402.4151 [INSPIRE].
  41. [41]
    Y. BenTov and A. Zee, Origin of families and SO(18) grand unification, Phys. Rev. D 93 (2016) 065036 [arXiv:1505.04312] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Chandrasekharan, The fermion bag approach to lattice field theories, Phys. Rev. D 82 (2010) 025007 [arXiv:0910.5736] [INSPIRE].ADSGoogle Scholar
  43. [43]
    H.R. Moshfegh and M. Ghazanfari Mojarrad, Strange baryonic matter in the Thomas-Fermi theory, Eur. Phys. J. A 49 (2013) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H.S. Sharatchandra, H.J. Thun and P. Weisz, Susskind Fermions on a Euclidean Lattice, Nucl. Phys. B 192 (1981) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.F.L. Golterman and J. Smit, Selfenergy and Flavor Interpretation of Staggered Fermions, Nucl. Phys. B 245 (1984) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. van den Doel and J. Smit, Dynamical Symmetry Breaking in Two Flavor SU(N ) and SO(N ) Lattice Gauge Theories, Nucl. Phys. B 228 (1983) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Chandrasekharan, Fermion Bags and A New Origin for a Fermion Mass, PoS(LATTICE2014)309 [arXiv:1412.3532] [INSPIRE].
  48. [48]
    M.F. Atiyah and I.M. Singer, The index of elliptic operators. 5, Annals Math. 93 (1971) 139 [INSPIRE].
  49. [49]
    J. Smit and J.C. Vink, Remnants of the Index Theorem on the Lattice, Nucl. Phys. B 286 (1987) 485 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D.H. Adams, Theoretical foundation for the Index Theorem on the lattice with staggered fermions, Phys. Rev. Lett. 104 (2010) 141602 [arXiv:0912.2850] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    R. Pordes et al., The Open Science Grid, J. Phys. Conf. Ser. 78 (2007) 012057 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi and F. Wurthwein, The Pilot Way to Grid Resources Using glideinWMS, in proceedings of WRI World Congress on Computer Science and Information Engineering 2 (2009) 428.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsDuke UniversityDurhamU.S.A.
  2. 2.Center for High Energy Physics, Indian Institute of ScienceBangaloreIndia

Personalised recommendations