Advertisement

Most general AdS3 boundary conditions

  • Daniel GrumillerEmail author
  • Max Riegler
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the most general asymptotically anti-de Sitter boundary conditions in three-dimensional Einstein gravity with negative cosmological constant. The metric contains in total twelve independent functions, six of which are interpreted as chemical potentials (or non-normalizable fluctuations) and the other half as canonical boundary charges (or normalizable fluctuations). Their presence modifies the usual Fefferman-Graham expansion. The asymptotic symmetry algebra consists of two \( \mathfrak{s}\mathfrak{l}{(2)}_k \) current algebras, the levels of which are given by k = ℓ/(4G N ), where is the AdS radius and G N the three-dimensional Newton constant.

Keywords

AdS-CFT Correspondence Chern-Simons Theories Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Staruszkiewicz, Gravitation theory in three-dimensional space, Acta Phys. Polon. 24 (1963) 734 [INSPIRE].MathSciNetGoogle Scholar
  2. [2]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].
  3. [3]
    S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Henneaux, C. Martinez and R. Troncoso, Asymptotically anti-de Sitter spacetimes in topologically massive gravity, Phys. Rev. D 79 (2009) 081502 [arXiv:0901.2874] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holography — lock, stock and barrel, Phys. Rev. D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].ADSGoogle Scholar
  10. [10]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Compère, W. Song and A. Strominger, New boundary conditions for AdS 3, JHEP 05 (2013) 152 [arXiv:1303.2662] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Afshar, S. Detournay, D. Grumiller and B. Oblak, Near-horizon geometry and warped conformal symmetry, JHEP 03 (2016) 187 [arXiv:1512.08233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for general relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Troessaert, Enhanced asymptotic symmetry algebra of AdS 3, JHEP 08 (2013) 044 [arXiv:1303.3296] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Troessaert, Poisson structure of the boundary gravitons in 3D gravity with negative Λ, Class. Quant. Grav. 32 (2015) 235019 [arXiv:1507.01580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S.G. Avery, R.R. Poojary and N.V. Suryanarayana, An sl(2, R) current algebra from AdS 3 gravity, JHEP 01 (2014) 144 [arXiv:1304.4252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  23. [23]
    M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [INSPIRE].
  24. [24]
    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].
  25. [25]
    A. Campoleoni, Higher spins in D = 2 + 1, Subnucl. Ser. 49 (2013) 385 [arXiv:1110.5841] [INSPIRE].zbMATHGoogle Scholar
  26. [26]
    M. Riegler, How general is holography?, Ph.D. thesis, TU Wien, Vienna Austria (2016) [arXiv:1609.02733] [INSPIRE].
  27. [27]
    M. Bañados, Global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].Google Scholar
  28. [28]
    M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2 + 1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Blagojevic, Gravitation and gauge symmetries, IOP publishing, U.K. (2002).CrossRefzbMATHGoogle Scholar
  30. [30]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
  31. [31]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  32. [32]
    C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les Mathematiques d’aujourd’hui, Astérisque, France (1985), pg. 95.Google Scholar
  33. [33]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Compère, P.-J. Mao, A. Seraj and M.M. Sheikh-Jabbari, Symplectic and Killing symmetries of AdS 3 gravity: holographic vs boundary gravitons, JHEP 01 (2016) 080 [arXiv:1511.06079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Bagchi, D. Grumiller and W. Merbis, Stress tensor correlators in three-dimensional gravity, Phys. Rev. D 93 (2016) 061502 [arXiv:1507.05620] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  44. [44]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity — general recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    D. Grumiller, M. Leston and D. Vassilevich, Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].ADSGoogle Scholar
  51. [51]
    D. Grumiller, J. Salzer and D. Vassilevich, AdS 2 holography is (non-)trivial for (non-)constant dilaton, JHEP 12 (2015) 015 [arXiv:1509.08486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    L. Apolo and M. Porrati, Free boundary conditions and the AdS 3 /CFT 2 correspondence, JHEP 03 (2014) 116 [arXiv:1401.1197] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsTU WienViennaAustria

Personalised recommendations