Highest weight generating functions for hyperKähler T (G/H) spaces

  • Amihay Hanany
  • Sanjaye Ramgoolam
  • Diego Rodriguez-Gomez
Open Access
Regular Article - Theoretical Physics

Abstract

We develop an efficient procedure for counting holomorphic functions on a hyperKahler cone that has a resolution as a cotangent bundle of a homogeneous space by providing a formula for computing the corresponding Highest Weight Generating function.

Keywords

Differential and Algebraic Geometry Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.B. Kronheimer, A hyperKähler structure on the cotangent bundle of a complex Lie group, math/0409253.
  2. [2]
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Nanopoulos and D. Xie, Hitchin equation, singularity and N = 2 superconformal field theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Bourget and J. Troost, Duality and modularity in elliptic integrable systems and vacua of N =1 gauge theories, JHEP 04(2015) 128[arXiv:1501.05074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D.H. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebras, Chapman and Hall/CRC, U.K. (1993).MATHGoogle Scholar
  8. [8]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP 10 (2014) 099 [arXiv:1403.6107] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T ρσ(G) theories and their Hilbert series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Hanany and R. Kalveks, Highest weight generating functions for Hilbert series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.V. Ketov, Conformal field theory, World Scientific, Singapore (1995).CrossRefMATHGoogle Scholar
  17. [17]
    K. Higashijima, T. Kimura and M. Nitta, Calabi-Yau manifolds of cohomogeneity one as complex line bundles, Nucl. Phys. B 645 (2002) 438 [hep-th/0202064] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982) 539.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Arai and M. Nitta, Hyper-Kähler σ-models on (co)tangent bundles with SO(N ) isometry, Nucl. Phys. B 745 (2006) 208 [hep-th/0602277] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Kronheimer, A hyper-Kählerian structure on coadjoint orbits of a semi-simple complex group, J. Lond. Math. Soc. 42 (1990) 193.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J.-H. Yang, Harmonic analysis on homogeneous spaces, math/0601655.
  22. [22]
    W. Lerche, On Goldstone fields in supersymmetric theories, Nucl. Phys. B 238 (1984) 582 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Nitta, Moduli space of global symmetry in N = 1 supersymmetric theories and the quasi-Nambu-Goldstone bosons, Int. J. Mod. Phys. A 14 (1999) 2397 [hep-th/9805038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Hanany and R. Kalveks, Construction and deconstruction of single instanton Hilbert series, JHEP 12 (2015) 118 [arXiv:1509.01294] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Fernandez Nunez, W. Garcia Fuertes and A.M. Perelomov, On an approach for computing the generating functions of the characters of simple Lie algebras, J. Phys. A 47 (2014) 145202 [arXiv:1304.7203].ADSMathSciNetMATHGoogle Scholar
  26. [26]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a geometric aperçu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    LieART (Lie Algebras and Representation Theory) webpage, https://lieart.hepforge.org.
  28. [28]
    A. Hanany and R. Klaveks, to appear.Google Scholar
  29. [29]
    A.A. Kirillov, Merits and demerits of the orbit method, Bull. Amer. Math. Soc. 36 (1999) 433.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. Bernatska and P. Holod, Geometry and topology of coadjoint orbits of semisimple Lie groups, in Proceedings of the Ninth International Conference on Geometry, Integrability and Quantization, Softex, Sofia Bulgaria (2008), pg. 146.Google Scholar
  31. [31]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  32. [32]
    A.P. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].
  33. [33]
    P.-M. Ho and S. Ramgoolam, Higher dimensional geometries from matrix brane constructions, Nucl. Phys. B 627 (2002) 266 [hep-th/0111278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. Ramgoolam, Higher dimensional geometries related to fuzzy odd dimensional spheres, JHEP 10 (2002) 064 [hep-th/0207111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Y. Kimura, On higher dimensional fuzzy spherical branes, Nucl. Phys. B 664 (2003) 512 [hep-th/0301055] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Amihay Hanany
    • 1
  • Sanjaye Ramgoolam
    • 2
  • Diego Rodriguez-Gomez
    • 3
  1. 1.Theoretical Physics GroupImperial College LondonLondonU.K.
  2. 2.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  3. 3.Department of PhysicsUniversidad de OviedoOviedoSpain

Personalised recommendations