Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

  • Alexandre Alves
  • Daniel A. Camargo
  • Alex G. Dias
  • Robinson Longas
  • Celso C. Nishi
  • Farinaldo S. QueirozEmail author
Open Access
Regular Article - Theoretical Physics


Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1) P Q symmetry into a residual \( {\mathbb{Z}}_2 \) symmetry. The WIMP stability is guaranteed by the \( {\mathbb{Z}}_2 \) symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100-500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.


Beyond Standard Model Cosmology of Theories beyond the SM Discrete Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329].ADSCrossRefGoogle Scholar
  6. [6]
    A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].Google Scholar
  11. [11]
    P. Sikivie, Axion Cosmology, Lect. Notes Phys. 741 (2008) 19 [astro-ph/0610440].
  12. [12]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  13. [13]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Dasgupta, E. Ma and K. Tsumura, Weakly interacting massive particle dark matter and radiative neutrino mass from Peccei-Quinn symmetry, Phys. Rev. D 89 (2014) 041702 [arXiv:1308.4138] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar Dark Matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Kadastik, K. Kannike and M. Raidal, Dark Matter as the signal of Grand Unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].
  18. [18]
    M. Frigerio and T. Hambye, Dark matter stability and unification without supersymmetry, Phys. Rev. D 81 (2010) 075002 [arXiv:0912.1545] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Nagata, K.A. Olive and J. Zheng, Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models, JHEP 10 (2015) 193 [arXiv:1509.00809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Arbelaez, R. Longas, D. Restrepo and O. Zapata, Fermion dark matter from SO(10) GUTs, Phys. Rev. D 93 (2016) 013012 [arXiv:1509.06313] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.M. Boucenna, M.B. Krauss and E. Nardi, Dark matter from the vector of SO (10), Phys. Lett. B 755 (2016) 168 [arXiv:1511.02524] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.G. Dias, A.C.B. Machado, C.C. Nishi, A. Ringwald and P. Vaudrevange, The Quest for an Intermediate-Scale Accidental Axion and Further ALPs, JHEP 06 (2014) 037 [arXiv:1403.5760] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93 (2016) 085031 [arXiv:1512.06436] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Mambrini, S. Profumo and F.S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807 [arXiv:1508.06635] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  27. [27]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  28. [28]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  29. [29]
    G. Raffelt and D. Seckel, Bounds on Exotic Particle Interactions from SN 1987a, Phys. Rev. Lett. 60 (1988) 1793 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, arXiv:1311.0029 [INSPIRE].
  31. [31]
    K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP 09 (2008) 005 [arXiv:0806.0497] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Visinelli and P. Gondolo, Dark Matter Axions Revisited, Phys. Rev. D 80 (2009) 035024 [arXiv:0903.4377] [INSPIRE].ADSGoogle Scholar
  33. [33]
    O. Wantz and E.P.S. Shellard, Axion Cosmology Revisited, Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066] [INSPIRE].ADSzbMATHGoogle Scholar
  34. [34]
    M.P. Hertzberg, M. Tegmark and F. Wilczek, Axion Cosmology and the Energy Scale of Inflation, Phys. Rev. D 78 (2008) 083507 [arXiv:0807.1726] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 1005 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  36. [36]
    J.M. Arnold, B. Fornal and M. Trott, Prospects and Constraints for Vector-like MFV Matter at LHC, JHEP 08 (2010) 059 [arXiv:1005.2185] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    Y. Grossman, Y. Nir, J. Thaler, T. Volansky and J. Zupan, Probing minimal flavor violation at the LHC, Phys. Rev. D 76 (2007) 096006 [arXiv:0706.1845] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007) 035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [INSPIRE].
  39. [39]
    B. SwieŻewska, Yukawa independent constraints for two-Higgs-doublet models with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 055027 [arXiv:1209.5725] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Ilnicka, M. Krawczyk and T. Robens, Inert Doublet Model in light of LHC Run I and astrophysical data, Phys. Rev. D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P.M. Ferreira and B. Swiezewska, One-loop contributions to neutral minima in the inert doublet model, JHEP 04 (2016) 099 [arXiv:1511.02879] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
  43. [43]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC, Phys. Rev. D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE].ADSGoogle Scholar
  46. [46]
    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  51. [51]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  52. [52]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  53. [53]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  54. [54]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  55. [55]
    M. Kamionkowski, WIMP and axion dark matter, hep-ph/9710467 [INSPIRE].
  56. [56]
    K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Corianò, M. Guzzi, N. Irges and A. Mariano, Axion and Neutralinos from Supersymmetric Extensions of the Standard Model with anomalous U(1)’s, Phys. Lett. B 671 (2009) 87 [arXiv:0811.0117] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F.D. Steffen, Dark Matter Candidates - Axions, Neutralinos, Gravitinos and Axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Jaeckel, The Physics Case for Axions, WIMPs, WISPs and Other Weird Stuff, in proceedings of the 4th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2008), Hamburg, Germany, June 18-21, 2008, pp. 3-8, arXiv:0809.3112 [DOI].
  60. [60]
    H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K.J. Bae, H. Baer and E.J. Chun, Mixed axion/neutralino dark matter in the SUSY DFSZ axion model, JCAP 12 (2013) 028 [arXiv:1309.5365] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K.J. Bae, H. Baer, E.J. Chun and C.S. Shin, Mixed axion/gravitino dark matter from SUSY models with heavy axinos, Phys. Rev. D 91 (2015) 075011 [arXiv:1410.3857] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Y.V. Stadnik and V.V. Flambaum, Nuclear spin-dependent interactions: Searches for WIMP, Axion and Topological Defect Dark Matter and Tests of Fundamental Symmetries, Eur. Phys. J. C 75 (2015) 110 [arXiv:1408.2184] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F.S. Queiroz, K. Sinha and W. Wester, Rich tapestry: Supersymmetric axions, dark radiation and inflationary reheating, Phys. Rev. D 90 (2014) 115009 [arXiv:1407.4110] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K.J. Bae, H. Baer, H. Serce and Y.-F. Zhang, Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter, JCAP 01 (2016) 012 [arXiv:1510.00724] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    K.J. Bae, H. Baer, A. Lessa and H. Serce, Mixed axion-wino dark matter, Front. Phys. 3 (2015) 49 [arXiv:1502.07198].CrossRefGoogle Scholar
  67. [67]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
  68. [68]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    F.S. Queiroz and C.E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038 [arXiv:1511.05967] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the Inert Doublet Dark Matter Model with Cherenkov Telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  72. [72]
    V. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  74. [74]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  75. [75]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal Extension of the Standard Model Scalar Sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].
  76. [76]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz and P.S. Rodrigues da Silva, WIMPs in a 3-3-1 model with heavy Sterile neutrinos, Phys. Rev. D 83 (2011) 065024 [arXiv:1010.4097] [INSPIRE].
  80. [80]
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva, On the Connection of Gamma-Rays, Dark Matter and Higgs Searches at LHC, Phys. Rev. D 86 (2012) 075011 [arXiv:1206.5779] [INSPIRE].
  81. [81]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct Detection of Higgs-Portal Dark Matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Dasgupta and D. Borah, Scalar Dark Matter with Type II Seesaw, Nucl. Phys. B 889 (2014) 637 [arXiv:1404.5261] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    D. Cogollo, A.X. Gonzalez-Morales, F.S. Queiroz and P.R. Teles, Excluding the Light Dark Matter Window of a 331 Model Using LHC and Direct Dark Matter Detection Data, JCAP 11 (2014) 002 [arXiv:1402.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar
  86. [86]
    F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, Dark Matter and Anomalous LHC Events, Phys. Rev. D 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].ADSGoogle Scholar
  87. [87]
    L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines, Phys. Lett. B 751 (2015) 119 [arXiv:1508.04418] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection, JHEP 06 (2016) 152 [arXiv:1509.04282] [INSPIRE].
  90. [90]
    A. Beniwal et al., Combined analysis of effective Higgs portal dark matter models, Phys. Rev. D 93 (2016) 115016 [arXiv:1512.06458] [INSPIRE].ADSGoogle Scholar
  91. [91]
    H. Han and S. Zheng, New Constraints on Higgs-portal Scalar Dark Matter, JHEP 12 (2015) 044 [arXiv:1509.01765] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    G. Dupuis, Collider Constraints and Prospects of a Scalar Singlet Extension to Higgs Portal Dark Matter, JHEP 07 (2016) 008 [arXiv:1604.04552] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    H. Han, J.M. Yang, Y. Zhang and S. Zheng, Collider Signatures of Higgs-portal Scalar Dark Matter, Phys. Lett. B 756 (2016) 109 [arXiv:1601.06232] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    N. Blinov, J. Kozaczuk, D.E. Morrissey and A. de la Puente, Compressing the Inert Doublet Model, Phys. Rev. D 93 (2016) 035020 [arXiv:1510.08069] [INSPIRE].ADSGoogle Scholar
  95. [95]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
  97. [97]
    C. Arina, F.-S. Ling and M.H.G. Tytgat, IDM and iDM or The Inert Doublet Model and Inelastic Dark Matter, JCAP 10 (2009) 018 [arXiv:0907.0430] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
  99. [99]
    LUX collaboration, D.S. Akerib et al., Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  100. [100]
    SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
  101. [101]
    PICO collaboration, C. Amole et al., Dark Matter Search Results from the PICO-2L C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 114 (2015) 231302 [arXiv:1503.00008] [INSPIRE].
  102. [102]
    DarkSide collaboration, P. Agnes et al., First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del Gran Sasso, Phys. Lett. B 743 (2015) 456 [arXiv:1410.0653] [INSPIRE].
  103. [103]
    PandaX collaboration, M. Xiao et al., First dark matter search results from the PandaX-I experiment, Sci. China Phys. Mech. Astron. 57 (2014) 2024 [arXiv:1408.5114] [INSPIRE].
  104. [104]
    PICASSO collaboration, S. Archambault et al., Constraints on Low-Mass WIMP Interactions on 19 F from PICASSO, Phys. Lett. B 711 (2012) 153 [arXiv:1202.1240] [INSPIRE].
  105. [105]
    IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04 (2016) 022 [arXiv:1601.00653] [INSPIRE].
  106. [106]
    Super-Kamiokande collaboration, K. Choi et al., Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, Phys. Rev. Lett. 114 (2015) 141301 [arXiv:1503.04858] [INSPIRE].
  107. [107]
    Super-Kamiokande collaboration, P. Mijakowski, Indirect searches for dark matter particles at Super-Kamiokande, J. Phys. Conf. Ser. 718 (2016) 042040 [INSPIRE].
  108. [108]
    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288].
  109. [109]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  110. [110]
    F. Giacchino, A. Ibarra, L. Lopez Honorez, M.H.G. Tytgat and S. Wild, Signatures from Scalar Dark Matter with a Vector-like Quark Mediator, JCAP 02 (2016) 002 [arXiv:1511.04452] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Profumo, Astrophysical Probes of Dark Matter, arXiv:1301.0952 [INSPIRE].
  112. [112]
    F.S. Queiroz, Dark Matter Overview: Collider, Direct and Indirect Detection Searches, arXiv:1605.08788 [INSPIRE].
  113. [113]
    G. Bertone and D. Hooper, A History of Dark Matter, Submitted to: Rev. Mod. Phys. (2016) [arXiv:1605.04909] [INSPIRE].
  114. [114]
    D. Hooper, C. Kelso and F.S. Queiroz, Stringent and Robust Constraints on the Dark Matter Annihilation Cross section From the Region of the Galactic Center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A. Berlin and D. Hooper, Stringent Constraints on the Dark Matter Annihilation Cross section From Subhalo Searches with the Fermi Gamma-Ray Space Telescope, Phys. Rev. D 89 (2014) 016014 [arXiv:1309.0525] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A.X. Gonzalez-Morales, S. Profumo and F.S. Queiroz, Effect of Black Holes in Local Dwarf Spheroidal Galaxies on Gamma-Ray Constraints on Dark Matter Annihilation, Phys. Rev. D 90 (2014) 103508 [arXiv:1406.2424] [INSPIRE].ADSGoogle Scholar
  118. [118]
    B. Dutta, Y. Gao, T. Ghosh and L.E. Strigari, Confronting Galactic center and dwarf spheroidal gamma-ray observations with cascade annihilation models, Phys. Rev. D 92 (2015) 075019 [arXiv:1508.05989] [INSPIRE].ADSGoogle Scholar
  119. [119]
    K.K. Boddy and J. Kumar, Indirect Detection of Dark Matter Using MeV-Range Gamma-Ray Telescopes, Phys. Rev. D 92 (2015) 023533 [arXiv:1504.04024] [INSPIRE].ADSGoogle Scholar
  120. [120]
    A.A. Kaurov, D. Hooper and N.Y. Gnedin, The Effects of Dark Matter Annihilation on Cosmic Reionization, Submitted to: Astrophys. J. (2015) [arXiv:1512.00526] [INSPIRE].
  121. [121]
    T. Bringmann, A.J. Galea and P. Walia, Leading QCD Corrections for Indirect Dark Matter Searches: a Fresh Look, Phys. Rev. D 93 (2016) 043529 [arXiv:1510.02473] [INSPIRE].ADSGoogle Scholar
  122. [122]
    J. Kumar, J. Liao and D. Marfatia, Dark matter annihilation with s-channel internal Higgsstrahlung, Phys. Lett. B 759 (2016) 277 [arXiv:1605.00611] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    F.S. Queiroz, C.E. Yaguna and C. Weniger, Gamma-ray Limits on Neutrino Lines, JCAP 05 (2016) 050 [arXiv:1602.05966] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    M.G. Baring, T. Ghosh, F.S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 (2016) 103009 [arXiv:1510.00389] [INSPIRE].ADSGoogle Scholar
  125. [125]
    S. Profumo, F.S. Queiroz and C.E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray Lines from Dark Matter Annihilation, arXiv:1602.08501 [INSPIRE].
  126. [126]
    H.E.S.S. collaboration, A. Abramowski et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].
  127. [127]
    V. Lefranc, E. Moulin, P. Panci and J. Silk, Prospects for Annihilating Dark Matter in the inner Galactic halo by the Cherenkov Telescope Array, Phys. Rev. D 91 (2015) 122003 [arXiv:1502.05064] [INSPIRE].ADSGoogle Scholar
  128. [128]
    H. Silverwood, C. Weniger, P. Scott and G. Bertone, A realistic assessment of the CTA sensitivity to dark matter annihilation, JCAP 03 (2015) 055 [arXiv:1408.4131] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    ADMX collaboration, S.J. Asztalos et al., Design and performance of the ADMX SQUID-based microwave receiver, Nucl. Instrum. Meth. A 656 (2011) 39 [arXiv:1105.4203] [INSPIRE].
  130. [130]
    E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].
  131. [131]
    D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].
  132. [132]
    V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].ADSGoogle Scholar
  133. [133]
    L. Wang and X.-F. Han, Study of the heavy CP-even Higgs with mass 125 GeV in two-Higgs-doublet models at the LHC and ILC, JHEP 11 (2014) 085 [arXiv:1404.7437] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics Opportunities of a 100 TeV Proton-Proton Collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, arXiv:1606.00947 [INSPIRE].

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Alexandre Alves
    • 1
  • Daniel A. Camargo
    • 2
  • Alex G. Dias
    • 2
  • Robinson Longas
    • 3
  • Celso C. Nishi
    • 4
  • Farinaldo S. Queiroz
    • 5
    Email author
  1. 1.Departamento de Ciências Exatas e da TerraUniversidade Federal de São PauloDiademaBrasil
  2. 2.Universidade Federal do ABC, Centro de Ciências Naturais e HumanasSanto AndréBrasil
  3. 3.Instituto de FísicaUniversidad de AntioquiaMedellínColombia
  4. 4.Universidade Federal do ABC, Centro de Matemática, Computação e Cognição NaturaisSanto AndréBrasil
  5. 5.Max-Planck-Institut fur KernphysikHeidelbergGermany

Personalised recommendations