Journal of High Energy Physics

, 2015:193 | Cite as

Weakly-interacting massive particles in non-supersymmetric SO(10) grand unified models

  • Natsumi Nagata
  • Keith A. Olive
  • Jiaming ZhengEmail author
Open Access
Regular Article - Theoretical Physics


Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting dark matter candidates in terms of their quantum numbers of SU(2) L ⊗ U(1) Y , BL, and SU(2) R . We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2) L singlets with zero hypercharge or doublets with Y = 1/2 satisfy all constraints for SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(3) C ⊗ SU(2) L ⊗ SU(2) R ⊗ U(1) BL intermediate scale gauge groups. Among fermion triplets with zero hypercharge, only a triplet in the 45 with intermediate group SU(4) C ⊗ SU(2) L ⊗ SU(2) R leads to solutions with M GUT > M int and a long proton lifetime. We find three models with weak doublets and Y = 1/2 as dark matter candidates for the SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(4) C ⊗ SU(2) L ⊗ U(1) R intermediate scale gauge groups assuming a minimal Higgs content. We also discuss how these models may be tested at accelerators and in dark matter detection experiments.


GUT Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  2. [2]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  3. [3]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  5. [5]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
  6. [6]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  7. [7]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].
  8. [8]
    M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].
  9. [9]
    G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: the role of the second KK level, JCAP 02 (2011) 009 [arXiv:1012.2577] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].
  12. [12]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  13. [13]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].
  14. [14]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [INSPIRE].
  15. [15]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [INSPIRE].
  16. [16]
    A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [INSPIRE].
  17. [17]
    T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in SO(10), Phys. Lett. B 113 (1982) 237 [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    R.N. Mohapatra, New contributions to neutrinoless double beta decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [INSPIRE].ADSGoogle Scholar
  19. [19]
    L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].
  23. [23]
    M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].
  25. [25]
    M. Frigerio and T. Hambye, Dark matter stability and unification without supersymmetry, Phys. Rev. D 81 (2010) 075002 [arXiv:0912.1545] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Hambye, On the stability of particle dark matter, PoS(IDM2010)098 [arXiv:1012.4587] [INSPIRE].
  27. [27]
    H. Georgi, The state of the art-gauge theories, AIP Conf. Proc. 23 (1975) 575.CrossRefADSGoogle Scholar
  28. [28]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    M.S. Chanowitz, J.R. Ellis and M.K. Gaillard, The price of natural flavor conservation in neutral weak interactions, Nucl. Phys. B 128 (1977) 506 [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    H. Georgi and D.V. Nanopoulos, Ordinary predictions from grand principles: T quark mass in O(10), Nucl. Phys. B 155 (1979) 52 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    H. Georgi and D.V. Nanopoulos, Masses and mixing in unified theories, Nucl. Phys. B 159 (1979) 16 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    C.E. Vayonakis, On mass relations and renormalization effects in grand unified theories, Phys. Lett. B 82 (1979) 224 [Erratum ibid. 83B (1979) 421] [INSPIRE].
  33. [33]
    A. Masiero, On the phenomenological group in unified SO(10) model, Phys. Lett. B 93 (1980) 295 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    Q. Shafi, M. Sondermann and C. Wetterich, Fourth color in O(10), Phys. Lett. B 92 (1980) 304 [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    F. del Aguila and L.E. Ibáñez, Higgs bosons in SO(10) and partial unification, Nucl. Phys. B 177 (1981) 60 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    R.N. Mohapatra and G. Senjanović, Higgs boson effects in grand unified theories, Phys. Rev. D 27 (1983) 1601 [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Rajpoot, Symmetry breaking and intermediate mass scales in the SO(10) grand unified theory, Phys. Rev. D 22 (1980) 2244 [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    M. Yasue, Phenomenological Aspect of SO(10) Grand Unified Model, Prog. Theor. Phys. 65 (1981) 708 [Erratum ibid. 65 (1981) 1480] [INSPIRE].
  39. [39]
    J.M. Gipson and R.E. Marshak, Intermediate mass scales in the new SO(10) grand unification in the one loop approximation, Phys. Rev. D 31 (1985) 1705 [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Chang, R.N. Mohapatra, J. Gipson, R.E. Marshak and M.K. Parida, Experimental tests of new SO(10) grand unification, Phys. Rev. D 31 (1985) 1718 [INSPIRE].ADSGoogle Scholar
  41. [41]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev. D 46 (1993) 2261 [INSPIRE].ADSGoogle Scholar
  42. [42]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification with two intermediate stages, Phys. Rev. D 47 (1993) 2892 [hep-ph/9211232] [INSPIRE].
  43. [43]
    S. Bertolini, L. Di Luzio and M. Malinsky, On the vacuum of the minimal nonsupersymmetric SO(10) unification, Phys. Rev. D 81 (2010) 035015 [arXiv:0912.1796] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Fukugita and T. Yanagida, Physics of neutrinos, in Physics and astrophysics ofneutrinos, M. Fukugita and A. Suzuki eds., Springer, Germany (1994), YITP-K-1050.Google Scholar
  45. [45]
    L. Di Luzio, Aspects of symmetry breaking in grand unified theories, arXiv:1110.3210.
  46. [46]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  48. [48]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95.Google Scholar
  49. [49]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  50. [50]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Adv. Study Ser. 59 (1980) 687.Google Scholar
  51. [51]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. De Montigny and M. Masip, Discrete gauge symmetries in supersymmetric grand unified models, Phys. Rev. D 49 (1994) 3734 [hep-ph/9309312] [INSPIRE].
  54. [54]
    Y. Mambrini, N. Nagata, K.A. Olive, J. Quevillon and J. Zheng, Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 (2015) 095010 [arXiv:1502.06929] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y. Mambrini, K.A. Olive, J. Quevillon and B. Zaldivar, Gauge coupling unification and non-equilibrium thermal dark matter, Phys. Rev. Lett. 110 (2013) 241306 [arXiv:1302.4438] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: gauge coupling unification, proton decay and fermion masses, Phys. Rev. D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].
  58. [58]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, General formulation for proton decay rate in minimal supersymmetric SO(10) GUT, Eur. Phys. J. C 42 (2005) 191 [hep-ph/0401213] [INSPIRE].
  59. [59]
    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally massless Higgs doublets in supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    B. Grinstein, A supersymmetric SU(5) gauge theory with no gauge hierarchy problem, Nucl. Phys. B 206 (1982) 387 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, NSF-ITP-82-07 (1981), PRINT-81-0600 (Santa Barbara).
  62. [62]
    K. Inoue, A. Kakuto and H. Takano, Higgs as (pseudo)Goldstone particles, Prog. Theor. Phys. 75 (1986) 664 [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A.A. Anselm and A.A. Johansen, SUSY GUT with automatic doublet-triplet hierarchy, Phys. Lett. B 200 (1988) 331 [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    S. Weinberg, Supersymmetry at ordinary energies. 1. Masses and conservation laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  67. [67]
    N. Sakai and T. Yanagida, Proton decay in a class of supersymmetric grand unified models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    S. Dimopoulos, S. Raby and F. Wilczek, Proton decay in supersymmetric models, Phys. Lett. B 112 (1982) 133 [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    V.A. Kuzmin and M.E. Shaposhnikov, Baryon asymmetry of the universe versus left-right symmetry, Phys. Lett. B 92 (1980) 115 [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    T.W.B. Kibble, G. Lazarides and Q. Shafi, Walls bounded by strings, Phys. Rev. D 26 (1982) 435 [INSPIRE].ADSGoogle Scholar
  71. [71]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2)R breaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    D. Chang, R.N. Mohapatra and M.K. Parida, A new approach to left-right symmetry breaking in unified gauge theories, Phys. Rev. D 30 (1984) 1052 [INSPIRE].ADSGoogle Scholar
  73. [73]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Supersymmetric flipped SU(5) revitalized, Phys. Lett. B 194 (1987) 231 [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, An improved SU(5) × U(1) model from four-dimensional string, Phys. Lett. B 208 (1988) 209 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  75. [75]
    J.R. Ellis, J.L. Lopez and D.V. Nanopoulos, The prospects for CHORUS and NOMAD in the light of COBE and GALLEX, Phys. Lett. B 292 (1992) 189 [hep-ph/9207237] [INSPIRE].
  76. [76]
    J.R. Ellis, D.V. Nanopoulos and K.A. Olive, Flipped heavy neutrinos: From the solar neutrino problem to baryogenesis, Phys. Lett. B 300 (1993) 121 [hep-ph/9211325] [INSPIRE].
  77. [77]
    J.R. Ellis, J.L. Lopez, D.V. Nanopoulos and K.A. Olive, Flipped angles and phases: a systematic study, Phys. Lett. B 308 (1993) 70 [hep-ph/9303307] [INSPIRE].
  78. [78]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  79. [79]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  80. [80]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  84. [84]
    J. Hisano, D. Kobayashi, N. Mori and E. Senaha, Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology, Phys. Lett. B 742 (2015) 80 [arXiv:1410.3569] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    N. Nagata and S. Shirai, Higgsino dark matter in high-scale supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    N. Nagata and S. Shirai, Electroweakly-interacting Dirac dark matter, Phys. Rev. D 91 (2015) 055035 [arXiv:1411.0752] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S.M. Boucenna, M.B. Krauss and E. Nardi, Minimal asymmetric dark matter, Phys. Lett. B 748 (2015) 191 [arXiv:1503.01119] [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    K. Harigaya, K. Ichikawa, A. Kundu, S. Matsumoto and S. Shirai, Indirect probe of electroweak-interacting particles at future lepton colliders, JHEP 09 (2015) 105 [arXiv:1504.03402] [INSPIRE].CrossRefADSGoogle Scholar
  89. [89]
    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of minimal dark matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].CrossRefADSGoogle Scholar
  91. [91]
    C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from heavy minimal dark matter, arXiv:1507.05536 [INSPIRE].
  92. [92]
    C.-W. Chiang and E. Senaha, Electroweak interacting dark matter with a singlet scalar portal, Phys. Lett. B 750 (2015) 147 [arXiv:1508.02891] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  93. [93]
    B. Feldstein, M. Ibe and T.T. Yanagida, Hypercharged dark matter and direct detection as a probe of reheating, Phys. Rev. Lett. 112 (2014) 101301 [arXiv:1310.7495] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  95. [95]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
  96. [96]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  97. [97]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].
  98. [98]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  99. [99]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  100. [100]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  101. [101]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  102. [102]
    A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].CrossRefADSGoogle Scholar
  103. [103]
    A. Ilnicka, M. Krawczyk and T. Robens, The inert doublet model in the light of LHC and astrophysical dataAn update, arXiv:1508.01671 [INSPIRE].
  104. [104]
    T.W. Kephart and T.-C. Yuan, Origins of inert Higgs doublets, arXiv:1508.00673 [INSPIRE].
  105. [105]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  106. [106]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  107. [107]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  108. [108]
    M. Shiozawa, Nucleon decay searches, talk presented at Topics in Astroparticle and Underground Physics (TAUP 2013), September 8-13, Asilomar, CA, U.S.A (2013).Google Scholar
  109. [109]
    K.S. Babu et al., Working group report: baryon number violation, arXiv:1311.5285 [INSPIRE].
  110. [110]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  111. [111]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar singlet dark matter and gamma lines, Phys. Lett. B 751 (2015) 119 [arXiv:1508.04418] [INSPIRE].CrossRefADSGoogle Scholar
  112. [112]
    T. Abe, R. Kitano and R. Sato, Discrimination of dark matter models in future experiments, Phys. Rev. D 91 (2015) 095004 [arXiv:1411.1335] [INSPIRE].ADSGoogle Scholar
  113. [113]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  114. [114]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  115. [115]
    T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP 03 (2015) 109 [arXiv:1501.04161] [INSPIRE].CrossRefGoogle Scholar
  116. [116]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  117. [117]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  118. [118]
    K. Matsuda, Y. Koide and T. Fukuyama, Can the SO(10) model with two Higgs doublets reproduce the observed fermion masses?, Phys. Rev. D 64 (2001) 053015 [hep-ph/0010026] [INSPIRE].
  119. [119]
    T. Fukuyama, K. Ichikawa and Y. Mimura, Revisiting fermion mass and mixing fits in the minimal SUSY SO(10) GUT, arXiv:1508.07078 [INSPIRE].
  120. [120]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  121. [121]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  122. [122]
    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1508.04735 [INSPIRE].
  123. [123]
    CMS collaboration, Search for pair-production of first generation scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-041 (2012).
  124. [124]
    CMS collaboration, Search for pair-production of second generation leptoquarks in 8 TeV proton-proton collisions, CMS-PAS-EXO-12-042 (2012).
  125. [125]
    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].CrossRefADSGoogle Scholar
  126. [126]
    ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  127. [127]
    K. Shingo, Search for charginos nearly mass-degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV, CERN-THESIS-2014-163 (2014).
  128. [128]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].CrossRefADSGoogle Scholar
  129. [129]
    M. Cirelli, F. Sala and M. Taoso, Wino-like minimal dark matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  130. [130]
    A. Kounine, Latest AMS results: the positron fraction and the \( \overline{p}/p \) ratio, talk presented at AMS DAYS AT CERNThe future of cosmic ray physics and latest results, April 15-17, CERN, Switzerland (2015).Google Scholar
  131. [131]
    M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, Wino dark matter in light of the AMS-02 2015 data, Phys. Rev. D 91 (2015) 111701 [arXiv:1504.05554] [INSPIRE].ADSGoogle Scholar
  132. [132]
    K. Hamaguchi, T. Moroi and K. Nakayama, AMS-02 antiprotons from annihilating or decaying dark matter, Phys. Lett. B 747 (2015) 523 [arXiv:1504.05937] [INSPIRE].CrossRefADSGoogle Scholar
  133. [133]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].CrossRefADSGoogle Scholar
  134. [134]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].CrossRefADSGoogle Scholar
  135. [135]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect detection analysis: wino dark matter case study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].CrossRefADSGoogle Scholar
  136. [136]
    HESS collaboration, A. Abramowski et al., Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].
  137. [137]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
  138. [138]
    B. Bhattacherjee, M. Ibe, K. Ichikawa, S. Matsumoto and K. Nishiyama, Wino dark matter and future dSph observations, JHEP 07 (2014) 080 [arXiv:1405.4914] [INSPIRE].CrossRefADSGoogle Scholar
  139. [139]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].
  140. [140]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].CrossRefADSGoogle Scholar
  141. [141]
    J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].ADSGoogle Scholar
  142. [142]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  143. [143]
    J. Hisano, K. Ishiwata and N. Nagata, QCD effects on direct detection of wino dark matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].CrossRefADSGoogle Scholar
  144. [144]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  145. [145]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].CrossRefADSGoogle Scholar
  146. [146]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].CrossRefADSGoogle Scholar
  147. [147]
    R.J. Hill and M.P. Solon, Standard model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev. D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].ADSGoogle Scholar
  148. [148]
    R.J. Hill and M.P. Solon, Standard model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  149. [149]
    H. Baer, V. Barger, D. Mickelson, A. Mustafayev and X. Tata, Physics at a higgsino factory, JHEP 06 (2014) 172 [arXiv:1404.7510] [INSPIRE].CrossRefADSGoogle Scholar
  150. [150]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].CrossRefADSGoogle Scholar
  151. [151]
    F. Lemire and J. Patera, Congruence number: a generalization of SU(3) triality, J. Math. Phys. 21 (1980) 2026 [INSPIRE].MathSciNetCrossRefADSzbMATHGoogle Scholar
  152. [152]
    M. Machacek, The decay modes of the proton, Nucl. Phys. B 159 (1979) 37 [INSPIRE].CrossRefADSGoogle Scholar
  153. [153]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].CrossRefADSGoogle Scholar
  154. [154]
    F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].CrossRefADSGoogle Scholar
  155. [155]
    L.F. Abbott and M.B. Wise, The effective hamiltonian for nucleon decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].ADSGoogle Scholar
  156. [156]
    T. Nihei and J. Arafune, The two loop long range effect on the proton decay effective lagrangian, Prog. Theor. Phys. 93 (1995) 665 [hep-ph/9412325] [INSPIRE].
  157. [157]
    Y. Aoki, E. Shintani and A. Soni, Proton decay matrix elements on the lattice, Phys. Rev. D 89 (2014) 014505 [arXiv:1304.7424] [INSPIRE].ADSGoogle Scholar
  158. [158]
    P. Fileviez Perez, Fermion mixings versus D = 6 proton decay, Phys. Lett. B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].
  159. [159]
    C. Muñoz, Enhancement factors for supersymmetric proton decay in SU(5) and SO(10) with superfield techniques, Phys. Lett. B 177 (1986) 55 [INSPIRE].CrossRefADSGoogle Scholar
  160. [160]
    W.E. Caswell, J. Milutinovic and G. Senjanović, Predictions of left-right symmetric grand unified theories, Phys. Rev. D 26 (1982) 161 [INSPIRE].ADSGoogle Scholar
  161. [161]
    P. Nath and R.M. Syed, Complete cubic and quartic couplings of 16 and bar-16 in SO(10) unification, Nucl. Phys. B 618 (2001) 138 [hep-th/0109116] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  162. [162]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Natsumi Nagata
    • 1
    • 2
  • Keith A. Olive
    • 1
  • Jiaming Zheng
    • 1
    Email author
  1. 1.William I. Fine Theoretical Physics Institute, School of Physics and AstronomyUniversity of MinnesotaMinneapolisU.S.A.
  2. 2.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan

Personalised recommendations