Journal of High Energy Physics

, 2015:157 | Cite as

Relating Berkovits and A superstring field theories; small Hilbert space perspective

  • Theodore ErlerEmail author
Open Access
Regular Article - Theoretical Physics


In a previous paper it was shown that the recently constructed action for open superstring field theory based on A algebras can be re-written in Wess-Zumino-Witten-like form, thus establishing its relation to Berkovits’ open superstring field theory. In this paper we explain the relation between these two theories from a different perspective which emphasizes the small Hilbert space, and in particular the relation between the A structures on both sides.


Superstrings and Heterotic Strings String Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Erler, S. Konopka and I. Sachs, Resolving Wittens superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  3. [3]
    N. Berkovits, A new approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    T. Erler, Y. Okawa and T. Takezaki, A structure from the Berkovits formulation of open superstring field theory, arXiv:1505.01659 [INSPIRE].
  5. [5]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    T. Erler, S. Konopka and I. Sachs, N S-N S sector of closed superstring field theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    H. Kajiura, Noncommutative homotopy algebras associated with open strings, Rev. Math. Phys. 19 (2007) 1 [math/0306332] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: Foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    N. Moeller and I. Sachs, Closed string cohomology in open string field theory, JHEP 07 (2011) 022 [arXiv:1010.4125] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    D.J. Gross and A. Jevicki, Operator formulation of interacting string field theory, Nucl. Phys. B 283 (1987) 1 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M. Kroyter, Democratic superstring field theory: gauge fixing, JHEP 03 (2011) 081 [arXiv:1010.1662] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    T. Erler, Analytic solution for tachyon condensation in Berkovitsopen superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Arnold Sommerfeld CenterLudwig-Maximilians UniversityMunichGermany

Personalised recommendations