Journal of High Energy Physics

, 2015:141 | Cite as

Supersymmetric backgrounds and black holes in \( \mathcal{N}=\left(1,\;1\right) \) cosmological new massive supergravity

  • Gökhan Alkaç
  • Luca Basanisi
  • Eric A. Bergshoeff
  • Deniz Olgu Devecioğlu
  • Mehmet Ozkan
Open Access
Regular Article - Theoretical Physics

Abstract

Using an off-shell Killing spinor analysis we perform a systematic investigation of the supersymmetric background and black hole solutions of the \( \mathcal{N}=\left(1,\;1\right) \) Cosmological New Massive Gravity model. The solutions with a null Killing vector are the same pp-wave solutions that one finds in the \( \mathcal{N}=1 \) model but we find new solutions with a time-like Killing vector that are absent in the \( \mathcal{N}=1 \) case. An example of such a solution is a Lifshitz spacetime. We also consider the supersymmetry properties of the so-called rotating hairy BTZ black holes and logarithmic black holes in an AdS3 background. Furthermore, we show that under certain assumptions there is no supersymmetric Lifshitz black hole solution.

Keywords

Black Holes Supergravity Models Extended Supersymmetry 

References

  1. [1]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].Google Scholar
  2. [2]
    W. Siegel, Unextended Superfields in Extended Supersymmetry, Nucl. Phys. B 156 (1979) 135 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    M. Brown and S.J. Gates Jr., Superspace Bianchi Identities and the Supercovariant Derivative, Annals Phys. 122 (1979) 443 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    T. Uematsu, Structure of N = 1 Conformal and Poincaré Supergravity in (1 + 1)-dimensions and (2 + 1)-dimensions, Z. Phys. C 29 (1985) 143 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    T. Uematsu, Constraints and Actions in Two-dimensional and Three-dimensional N = 1 Conformal Supergravity, Z. Phys. C 32 (1986) 33 [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Annals Phys. 281 (2000) 409] [Erratum ibid. 185 (1988) 406] [INSPIRE].
  7. [7]
    S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S. Deser, Cosmological topological supergravity, in Quantum Theory of Gravity, S.M. Christensen ed., Adam Hilger, London U.K. (1984).Google Scholar
  9. [9]
    G.W. Gibbons, C.N. Pope and E. Sezgin, The General Supersymmetric Solution of Topologically Massive Supergravity, Class. Quant. Grav. 25 (2008) 205005 [arXiv:0807.2613] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    R. Andringa, E.A. Bergshoeff, M. de Roo, O. Hohm, E. Sezgin and P.K. Townsend, Massive 3D Supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, More on Massive 3D Supergravity, Class. Quant. Grav. 28 (2011) 015002 [arXiv:1005.3952] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    G. Alkaç, L. Basanisi, E.A. Bergshoeff, M. Ozkan and E. Sezgin, Massive \( \mathcal{N}=2 \) supergravity in three dimensions, JHEP 02 (2015) 125 [arXiv:1412.3118] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Higher derivative couplings and massive supergravity in three dimensions, JHEP 09 (2015) 081 [arXiv:1506.09063] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    N.S. Deger, A. Kaya, H. Samtleben and E. Sezgin, Supersymmetric Warped AdS in Extended Topologically Massive Supergravity, Nucl. Phys. B 884 (2014) 106 [arXiv:1311.4583] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    S.M. Kuzenko, U. Lindström, M. Roček, I. Sachs and G. Tartaglino-Mazzucchelli, Three-dimensional \( \mathcal{N}=2 \) supergravity theories: From superspace to components, Phys. Rev. D 89 (2014) 085028 [arXiv:1312.4267] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Giribet, J. Oliva, D. Tempo and R. Troncoso, Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity, Phys. Rev. D 80 (2009) 124046 [arXiv:0909.2564] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  19. [19]
    G. Clement, Black holes with a null Killing vector in new massive gravity in three dimensions, Class. Quant. Grav. 26 (2009) 165002 [arXiv:0905.0553] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    H. Lü and Z.-L. Wang, Supersymmetric Asymptotic AdS and Lifshitz Solutions in Einstein-Weyl and Conformal Supergravities, JHEP 08 (2012) 012 [arXiv:1205.2092] [INSPIRE].Google Scholar
  21. [21]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 Black Holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    E. Ayon-Beato, G. Giribet and M. Hassaine, Bending AdS Waves with New Massive Gravity, JHEP 05 (2009) 029 [arXiv:0904.0668] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    G. Clement, Warped AdS 3 black holes in new massive gravity, Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    O. Sarioglu, Stationary Lifshitz black holes of R 2 -corrected gravity theory, Phys. Rev. D 84 (2011) 127501 [arXiv:1109.4721] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Gökhan Alkaç
    • 1
  • Luca Basanisi
    • 1
  • Eric A. Bergshoeff
    • 1
  • Deniz Olgu Devecioğlu
    • 2
  • Mehmet Ozkan
    • 1
  1. 1.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations