Journal of High Energy Physics

, 2015:119 | Cite as

Chiral low-energy physics from squashed branes in deformed \( \mathcal{N}=4 \) SYM

Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the low-energy physics which arises on stacks of squashed brane solutions of SU(N ) \( \mathcal{N}=4 \) SYM, deformed by a cubic soft SUSY breaking potential. A brane configuration is found which leads to a low-energy physics similar to the standard model in the broken phase, assuming suitable VEV’s of the scalar zero modes. Due to the triple self-intersection of the branes, the matter content includes that of the MSSM with precisely 3 generations and right-handed neutrinos. No exotic quantum numbers arise, however there are extra chiral superfields with the quantum numbers of the Higgs doublets, the W, Z, eR and uR, whose fate depends on the details of the rich Higgs sector. The chiral low-energy sector is complemented by a heavy mirror sector with the opposite chiralities, as well as super-massive Kaluza-Klein towers completing the \( \mathcal{N}=4 \) multiplets. The sectors are protected by two gauged global U(1) symmetries.

Keywords

Spontaneous Symmetry Breaking Supersymmetric gauge theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Dubois-Violette, J. Madore and R. Kerner, Gauge Bosons in a Noncommutative Geometry, Phys. Lett. B 217 (1989) 485 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  4. [4]
    S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 [hep-th/0101102] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    R.P. Andrews and N. Dorey, Deconstruction of the Maldacena-Núñez compactification, Nucl. Phys. B 751 (2006) 304 [hep-th/0601098] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    R.P. Andrews and N. Dorey, Spherical deconstruction, Phys. Lett. B 631 (2005) 74 [hep-th/0505107] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    P. Aschieri, T. Grammatikopoulos, H.C. Steinacker and G. Zoupanos, Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking, JHEP 09 (2006) 026 [hep-th/0606021] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    H.C. Steinacker and G. Zoupanos, Fermions on spontaneously generated spherical extra dimensions, JHEP 09 (2007) 017 [arXiv:0706.0398] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    H.C. Steinacker and J. Zahn, Self-intersecting fuzzy extra dimensions from squashed coadjoint orbits in \( \mathcal{N}=4 \) SYM and matrix models, JHEP 02 (2015) 027 [arXiv:1409.1440] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    H.C. Steinacker, Spinning squashed extra dimensions and chiral gauge theory from N = 4 SYM, Nucl. Phys. B 896 (2015) 212 [arXiv:1411.3139] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    H.C. Steinacker and J. Zahn, An extended standard model and its Higgs geometry from the matrix model, PTEP 2014 (2014) 083B03 [arXiv:1401.2020] [INSPIRE].Google Scholar
  13. [13]
    H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    J. Nishimura and A. Tsuchiya, Realizing chiral fermions in the type IIB matrix model at finite N, JHEP 12 (2013) 002 [arXiv:1305.5547] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    I. Antoniadis, E. Kiritsis, J. Rizos and T.N. Tomaras, D-branes and the standard model, Nucl. Phys. B 660 (2003) 81 [hep-th/0210263] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    C. Kokorelis, Exact standard model structures from intersecting D5-branes, Nucl. Phys. B 677 (2004) 115 [hep-th/0207234] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    P. Manousselis and G. Zoupanos, Dimensional reduction of ten-dimensional supersymmetric gauge theories in the N = 1, D = 4 superfield formalism, JHEP 11 (2004) 025 [hep-ph/0406207] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    A. Karch, D. Lüst and A. Miemiec, New N = 1 superconformal field theories and their supergravity description, Phys. Lett. B 454 (1999) 265 [hep-th/9901041] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    P.C. Argyres, K.A. Intriligator, R.G. Leigh and M.J. Strassler, On inherited duality in N = 1 D=4 supersymmetric gauge theories, JHEP 04 (2000) 029 [hep-th/9910250] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    A.A. Tseytlin and K. Zarembo, Magnetic interactions of D-branes and Wess-Zumino terms in super Yang-Mills effective actions, Phys. Lett. B 474 (2000) 95 [hep-th/9911246] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    D.V. Belyaev and I.B. Samsonov, Wess-Zumino term in the N = 4 SYM effective action revisited, JHEP 04 (2011) 112 [arXiv:1103.5070] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    S. Andronache and H.C. Steinacker, The squashed fuzzy sphere, fuzzy strings and the Landau problem, J. Phys. A 48 (2015) 295401 [arXiv:1503.03625] [INSPIRE].MathSciNetGoogle Scholar
  26. [26]
    A. Chatzistavrakidis, H.C. Steinacker and G. Zoupanos, Intersecting branes and a standard model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    D.N. Blaschke and H.C. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP 10 (2011) 120 [arXiv:1109.3097] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys. B 511 (1998) 629 [hep-th/9705120] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    H.C. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S. Morelli, Stückelberg Axions and Anomalous Abelian Extensions of the Standard Model, Ph.D. Thesis, Università del Salento (2009) [arXiv:0907.3877] [INSPIRE].
  34. [34]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    C. Corianò and N. Irges, Windows over a New Low Energy Axion, Phys. Lett. B 651 (2007) 298 [hep-ph/0612140] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    C. Corianò, N. Irges and S. Morelli, Stuckelberg axions and the effective action of anomalous Abelian models. 1. A Unitarity analysis of the Higgs-axion mixing, JHEP 07 (2007) 008 [hep-ph/0701010] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069 [hep-ph/0503208] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    H.C. Steinacker, Emergent Gravity from Noncommutative Gauge Theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    H.C. Steinacker, Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models, JHEP 02 (2009) 044 [arXiv:0812.3761] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    H. Grosse, F. Lizzi and H.C. Steinacker, Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev. D 81 (2010) 085034 [arXiv:1001.2703] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    J. Maalampi and M. Roos, Physics of Mirror Fermions, Phys. Rept. 186 (1990) 53 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    T. Ibrahim and P. Nath, An MSSM Extension with a Mirror Fourth Generation, Neutrino Magnetic Moments and LHC Signatures, Phys. Rev. D 78 (2008) 075013 [arXiv:0806.3880] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Chatzistavrakidis, H.C. Steinacker and G. Zoupanos, Orbifolds, fuzzy spheres and chiral fermions, JHEP 05 (2010) 100 [arXiv:1002.2606] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations