Advertisement

Journal of High Energy Physics

, 2015:115 | Cite as

Lepton fluxes from atmospheric charm revisited

  • M. V. Garzelli
  • S. Moch
  • G. Sigl
Open Access
Regular Article - Theoretical Physics

Abstract

We update predictions for lepton fluxes from the hadroproduction of charm quarks in the scattering of primary cosmic rays with the Earth’s atmosphere. The calculation of charm-pair hadroproduction applies the latest results from perturbative QCD through next-to-next-to-leading order and modern parton distributions, together with estimates on various sources of uncertainties. Our predictions for the lepton fluxes turn out to be compatible, within the uncertainty band, with recent results in the literature. However, by taking into account contributions neglected in previous works, our total uncertainties are much larger. The predictions are crucial for the interpretation of results from neutrino experiments like IceCube, when disentangling signals of neutrinos of astrophysical origin from the atmospheric background.

Keywords

NLO Computations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.K. Gaisser, Atmospheric lepton fluxes, EPJ Web Conf. 99 (2015) 05002 [arXiv:1412.6424] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    IceCube collaboration, M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342 (2013) 1242856 [arXiv:1311.5238] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    IceCube collaboration, M.G. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    C.S. Fong, H. Minakata, B. Panes and R.Z. Funchal, Possible interpretations of IceCube high-energy neutrino events, JHEP 02 (2015) 189 [arXiv:1411.5318] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    C.-Y. Chen, P.S.B. Dev and A. Soni, A possible two-component flux for the high energy neutrino events at IceCube, Phys. Rev. D 92 (2015) 073001 [arXiv:1411.5658] [INSPIRE].ADSGoogle Scholar
  6. [6]
    G. Battistoni, C. Bloise, C. Forti, M. Greco, J. Ranft and A. Tanzini, Calculation of the TeV prompt muon component in very high-energy cosmic ray showers, Astropart. Phys. 4 (1996) 351 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    E.V. Bugaev, A. Misaki, V.A. Naumov, T.S. Sinegovskaya, S.I. Sinegovsky and N. Takahashi, Atmospheric muon flux at sea level, underground and underwater, Phys. Rev. D 58 (1998) 054001 [hep-ph/9803488] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Gondolo, G. Ingelman and M. Thunman, Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys. 5 (1996) 309 [hep-ph/9505417] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    L. Pasquali, M.H. Reno and I. Sarcevic, Lepton fluxes from atmospheric charm, Phys. Rev. D 59 (1999) 034020 [hep-ph/9806428] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Enberg, M.H. Reno and I. Sarcevic, Prompt neutrino fluxes from atmospheric charm, Phys. Rev. D 78 (2008) 043005 [arXiv:0806.0418] [INSPIRE].ADSGoogle Scholar
  11. [11]
    ALICE collaboration, Measurement of charm production at central rapidity in proton-proton collisions at \( \sqrt{s}=2.76 \) TeV, JHEP 07 (2012) 191 [arXiv:1205.4007] [INSPIRE].
  12. [12]
    ATLAS collaboration, Measurement of D meson production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-017, CERN, Geneva Switzerland (2011).
  13. [13]
    LHCb collaboration, Prompt charm production in pp collisions at \( \sqrt{s}=7 \) TeV, Nucl. Phys. B 871 (2013) 1 [arXiv:1302.2864] [INSPIRE].
  14. [14]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic and A. Stasto, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC, JHEP 06 (2015) 110 [arXiv:1502.01076] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    P. Lipari, Lepton spectra in the earths atmosphere, Astropart. Phys. 1 (1993) 195 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    C.J. Todero Peixoto, V. de Souza and P.L. Biermann, Cosmic rays: the spectrum and chemical composition from 1010 to 1020 eV, JCAP 07 (2015) 042 [arXiv:1502.00305] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    T.K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production and the atmospheric muon charge ratio, Astropart. Phys. 35 (2012) 801 [arXiv:1111.6675] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    T. Stanev, T.K. Gaisser and S. Tilav, High energy cosmic rays: sources and fluxes, Nucl. Instrum. Meth. A 742 (2014) 42 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    T.K. Gaisser, T. Stanev and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. China 8 (2013) 748 [arXiv:1303.3565] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K.-H. Kampert and M. Unger, Measurements of the cosmic ray composition with air shower experiments, Astropart. Phys. 35 (2012) 660 [arXiv:1201.0018] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    Pierre Auger collaboration, P. Abreu et al., Measurement of the proton-air cross-section at \( \sqrt{s}=57 \) TeV with the Pierre Auger Observatory, Phys. Rev. Lett. 109 (2012) 062002 [arXiv:1208.1520] [INSPIRE].
  23. [23]
    H.H. Mielke, M. Foeller, J. Engler and J. Knapp, Cosmic ray hadron flux at sea level up to 15 TeV, J. Phys. G 20 (1994) 637 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari and T. Stanev, Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D 80 (2009) 094003 [arXiv:0906.4113] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N.N. Kalmykov and S.S. Ostapchenko, The nucleus-nucleus interaction, nuclear fragmentation and fluctuations of extensive air showers, Phys. Atom. Nucl. 56 (1993) 346 [Yad. Fiz. 56N3 (1993) 105] [INSPIRE].
  26. [26]
    D. Heck, G. Schatz, T. Thouw, J. Knapp and J. Capdevielle, CORSIKA: a Monte Carlo code to simulate extensive air showers, FZKA-6019, (1998), pg. 1 [INSPIRE].
  27. [27]
    K. Werner, F.-M. Liu and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC, Phys. Rev. C 74 (2006) 044902 [hep-ph/0506232] [INSPIRE].
  28. [28]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in \( p\overline{p} \) collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].ADSGoogle Scholar
  30. [30]
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α s4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  40. [40]
    M. Dowling and S.-O. Moch, Differential distributions for top-quark hadro-production with a running mass, Eur. Phys. J. C 74 (2014) 3167 [arXiv:1305.6422] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 event generator, arXiv:1010.0819 [INSPIRE].
  48. [48]
    C. Lourenco and H.K. Wohri, Heavy flavour hadro-production from fixed-target to collider energies, Phys. Rept. 433 (2006) 127 [hep-ph/0609101] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    HERA-B collaboration, I. Abt et al., Measurement of D 0 , D + , D s+ and D ∗+ production in fixed target 920 GeV proton-nucleus collisions, Eur. Phys. J. C 52 (2007) 531 [arXiv:0708.1443] [INSPIRE].
  50. [50]
    PHENIX collaboration, A. Adare et al., Measurement of high-p T single electrons from heavy-flavor decays in p + p collisions at \( \sqrt{s}=200 \) GeV, Phys. Rev. Lett. 97 (2006) 252002 [hep-ex/0609010] [INSPIRE].
  51. [51]
    STAR collaboration, L. Adamczyk et al., Measurements of D 0 and D production in p + p collisions at \( \sqrt{s}=200 \) GeV, Phys. Rev. D 86 (2012) 072013 [arXiv:1204.4244] [INSPIRE].
  52. [52]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  53. [53]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    S. Alekhin, J. Blumlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Alekhin, J. Blumlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].ADSGoogle Scholar
  57. [57]
    PROSA collaboration, O. Zenaiev et al., Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x, Eur. Phys. J. C 75 (2015)396 [arXiv:1503.04581] [INSPIRE].
  58. [58]
    O. Zenaiev, Charm production and QCD analysis at HERA and LHC, Ph.D. thesis, DESY-THESIS-2015-012, Dept. Phys., U. Hamburg, Hamburg Germany (2015) [INSPIRE].
  59. [59]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  60. [60]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  61. [61]
    R. Gauld, J. Rojo, L. Rottoli and J. Talbert, Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy, arXiv:1506.08025 [INSPIRE].
  62. [62]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A. Cooper-Sarkar, P. Mertsch and S. Sarkar, The high energy neutrino cross-section in the Standard Model and its uncertainty, JHEP 08 (2011) 042 [arXiv:1106.3723] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    R.D. Ball and R.K. Ellis, Heavy quark production at high-energy, JHEP 05 (2001) 053 [hep-ph/0101199] [INSPIRE].
  66. [66]
    S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    H. Kawamura, N.A. Lo Presti, S. Moch and A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering, Nucl. Phys. B 864 (2012) 399 [arXiv:1205.5727] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].ADSGoogle Scholar
  69. [69]
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  70. [70]
    SELEX collaboration, A. Blanco-Covarrubias et al., Nuclear dependence of charm production, Eur. Phys. J. C 64 (2009) 637 [arXiv:0902.0355] [INSPIRE].
  71. [71]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  72. [72]
    TOTEM collaboration, G. Antchev et al., Luminosity-independent measurements of total, elastic and inelastic cross-sections at \( \sqrt{s}=7 \) TeV, Europhys. Lett. 101 (2013) 21004 [INSPIRE].
  73. [73]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  75. [75]
    ATLAS collaboration, Comparison of Monte Carlo generator predictions to ATLAS measurements of top pair production at 7 TeV, ATL-PHYS-PUB-2015-002, CERN, Geneva Switzerland (2015).
  76. [76]
    O. Behnke, A. Geiser and M. Lisovyi, Charm, beauty and top at HERA, Prog. Part. Nucl. Phys. 84 (2015) 1 [arXiv:1506.07519] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].
  78. [78]
    R. Aloisio, V. Berezinsky and P. Blasi, Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition, JCAP 10 (2014) 020 [arXiv:1312.7459] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.II. Institute for Theoretical PhysicsHamburg UniversityHamburgGermany

Personalised recommendations