Leptogenesis in minimal predictive seesaw models

Abstract

We estimate the Baryon Asymmetry of the Universe (BAU) arising from leptogenesis within a class of minimal predictive seesaw models involving two right-handed neutrinos and simple Yukawa structures with one texture zero. The two right-handed neutrinos are dominantly responsible for the “atmospheric” and “solar” neutrino masses with Yukawa couplings to (ν e , ν μ , ν τ ) proportional to (0, 1, 1) and (1, n, n − 2), respectively, where n is a positive integer. The neutrino Yukawa matrix is therefore characterised by two proportionality constants with their relative phase providing a leptogenesis-PMNS link, enabling the lightest right-handed neutrino mass to be determined from neutrino data and the observed BAU. We discuss an SU(5) SUSY GUT example, where A 4 vacuum alignment provides the required Yukawa structures with n = 3, while a \( {\mathrm{\mathbb{Z}}}_9 \) symmetry fixes the relatives phase to be a ninth root of unity.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  2. [2]

    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  3. [3]

    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

    Article  ADS  Google Scholar 

  6. [6]

    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95 [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].

  10. [10]

    P. Ramond, The family group in Grand Unified Theories, invited talk given at conference C79-02-25, February 1979, pg. 265 [CALT-68-709] [hep-ph/9809459] [INSPIRE].

  11. [11]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewwenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979) [Conf. Proc. C 790927 (1979) 315] [PRINT-80-0576] [arXiv:1306.4669] [INSPIRE].

  12. [12]

    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  16. [16]

    R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big bang nucleosynthesis: 2015, arXiv:1505.01076 [INSPIRE].

  17. [17]

    S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    S.F. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    S.F. King, Leptogenesis MNS link in unified models with natural neutrino mass hierarchy, Phys. Rev. D 67 (2003) 113010 [hep-ph/0211228] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].

    Article  ADS  Google Scholar 

  26. [26]

    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].

    Article  ADS  Google Scholar 

  27. [27]

    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    I. de Medeiros Varzielas, Non-Abelian family symmetries in Pati-Salam unification, JHEP 01 (2012) 097 [arXiv:1111.3952] [INSPIRE].

    Article  Google Scholar 

  29. [29]

    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    S.F. King, Minimal see-saw model predicting best fit lepton mixing angles, Phys. Lett. B 724 (2013) 92 [arXiv:1305.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    S.F. King, A model of quark and lepton mixing, JHEP 01 (2014) 119 [arXiv:1311.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    S.F. King, A to Z of flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].

    Article  ADS  Google Scholar 

  36. [36]

    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, arXiv:1412.6996 [INSPIRE].

  37. [37]

    K. Harigaya, M. Ibe and T.T. Yanagida, Seesaw mechanism with Occams razor, Phys. Rev. D 86 (2012) 013002 [arXiv:1205.2198] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    J. Zhang and S. Zhou, A further study of the Frampton-Glashow-Yanagida model for neutrino masses, flavor mixing and baryon number asymmetry, JHEP 09 (2015) 065 [arXiv:1505.04858] [INSPIRE].

    Article  Google Scholar 

  39. [39]

    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    S.F. King, Invariant see-saw models and sequential dominance, Nucl. Phys. B 786 (2007) 52 [hep-ph/0610239] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    E.E. Jenkins and A.V. Manohar, Tribimaximal mixing, leptogenesis and θ 13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [INSPIRE].

    Article  ADS  Google Scholar 

  42. [42]

    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [INSPIRE].

    Article  ADS  Google Scholar 

  44. [44]

    S. Choubey, S.F. King and M. Mitra, On the vanishing of the CP asymmetry in leptogenesis due to form dominance, Phys. Rev. D 82 (2010) 033002 [arXiv:1004.3756] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  46. [46]

    S.F. King, Vacuum misalignment corrections to tri-bimaximal mixing and form dominance, JHEP 01 (2011) 115 [arXiv:1011.6167] [INSPIRE].

    Article  ADS  Google Scholar 

  47. [47]

    D. Aristizabal Sierra, F. Bazzocchi and I. de Medeiros Varzielas, Leptogenesis in flavor models with type-I and II seesaws, Nucl. Phys. B 858 (2012) 196 [arXiv:1112.1843] [INSPIRE].

    Article  ADS  Google Scholar 

  48. [48]

    S.F. King, Leptogenesis MNS link in unified models with natural neutrino mass hierarchy, Phys. Rev. D 67 (2003) 113010 [hep-ph/0211228] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].

    Article  ADS  Google Scholar 

  50. [50]

    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, Leptogenesis in the two right-handed neutrino model revisited, Phys. Rev. D 86 (2012) 023516 [arXiv:1107.6002] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  52. [52]

    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

  53. [53]

    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally massless Higgs doublets in supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    B. Grinstein, A supersymmetric SU(5) gauge theory with no gauge hierarchy problem, Nucl. Phys. B 206 (1982) 387 [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    A.E. Nelson, Naturally weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    A.E. Nelson, Calculation of θ Barr, Phys. Lett. B 143 (1984) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  57. [57]

    S.M. Barr, Solving the strong CP problem without the Peccei-Quinn symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    S.M. Barr, A natural class of non-Peccei-Quinn models, Phys. Rev. D 30 (1984) 1805 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. [59]

    G.G. Ross, L. Velasco-Sevilla and O. Vives, Spontaneous CP-violation and non-Abelian family symmetry in SUSY, Nucl. Phys. B 692 (2004) 50 [hep-ph/0401064] [INSPIRE].

    Article  ADS  Google Scholar 

  60. [60]

    S. Antusch, S.F. King and M. Malinsky, Solving the SUSY flavour and CP problems with SU(3) family symmetry, JHEP 06 (2008) 068 [arXiv:0708.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  61. [61]

    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right unitarity triangles and tri-bimaximal mixing from discrete symmetries and unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivo de Medeiros Varzielas.

Additional information

ArXiv ePrint: 1505.05504

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Björkeroth, F., de Anda, F.J., de Medeiros Varzielas, I. et al. Leptogenesis in minimal predictive seesaw models. J. High Energ. Phys. 2015, 104 (2015). https://doi.org/10.1007/JHEP10(2015)104

Download citation

Keywords

  • Neutrino Physics
  • CP violation
  • GUT