Modular anomaly equations and S-duality in \( \mathcal{N}=2 \) conformal SQCD

  • S.K. Ashok
  • M. Billò
  • E. Dell’Aquila
  • M. Frau
  • A. Lerda
  • M. Raman
Open Access
Regular Article - Theoretical Physics

Abstract

We use localization techniques to study the non-perturbative properties of an \( \mathcal{N}=2 \) superconformal gauge theory with gauge group SU(3) and six fundamental flavours. The instanton corrections to the prepotential, the dual periods and the period matrix are calculated in a locus of special vacua possessing a 3 symmetry. In a semiclassical expansion, we show that these observables are constrained by S-duality via a modular anomaly equation which takes the form of a recursion relation. The solutions of the recursion relation are quasi-modular functions of Γ1 (3), which is a subgroup of the S-duality group and is also a congruence subgroup of SL(2, ℤ).

Keywords

Supersymmetry and Duality Supersymmetric gauge theory Extended Supersymmetry Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Teschner, Exact results on N = 2 supersymmetric gauge theories, arXiv:1412.7145 [INSPIRE].
  2. [2]
    M.-X. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid N = 2 theories, Annales Henri Poincaré 14 (2013) 425 [arXiv:1109.5728] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  3. [3]
    M. Billò, M. Frau, L. Gallot, A. Lerda and I. Pesando, Deformed N = 2 theories, generalized recursion relations and S-duality, JHEP 04 (2013) 039 [arXiv:1302.0686] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    M. Billò, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat kernel and S-duality in N = 2 theories, JHEP 11 (2013) 123 [arXiv:1307.6648] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    M.-X. Huang, Modular anomaly from holomorphic anomaly in mass deformed N = 2 superconformal field theories, Phys. Rev. D 87 (2013) 105010 [arXiv:1302.6095] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Billò et al., Modular anomaly equations in N = 2 theories and their large-N limit, JHEP 10 (2014) 131 [arXiv:1406.7255] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M. Billò, M. Frau, F. Fucito, A. Lerda and J.F. Morales, S-duality and the prepotential of N = 2 theories (I): the ADE algebras,arXiv:1507.07709[INSPIRE].
  8. [8]
    M. Billò, M. Frau, F. Fucito, A. Lerda and J.F. Morales, S-duality and the prepotential in N = 2 theories (II): the non-simply laced algebras,arXiv:1507.08027[INSPIRE].
  9. [9]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  11. [11]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    F. Fucito, J.F. Morales and R. Poghossian, Multi instanton calculus on ALE spaces, Nucl. Phys. B 703 (2004) 518 [hep-th/0406243] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  14. [14]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  18. [18]
    J.A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills, Nucl. Phys. B 464 (1996) 3 [hep-th/9507032] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    J.A. Minahan and D. Nemeschansky, N = 2 super Yang-Mills and subgroups of SL (2, Z), Nucl. Phys. B 468 (1996) 72 [hep-th/9601059] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    P.C. Argyres and S. Pelland, Comparing instanton contributions with exact results in N = 2 supersymmetric scale invariant theories, JHEP 03 (2000) 014 [hep-th/9911255] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    P.C. Argyres and A. Buchel, The nonperturbative gauge coupling of N = 2 supersymmetric theories, Phys. Lett. B 442 (1998) 180 [hep-th/9806234] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    N. Koblitz, Introduction to elliptic curves and modular forms, 2nd edition, Springer-Verlag, Germany (1993).Google Scholar
  23. [23]
    T.M. Apostol, Modular functions and Dirichlet series in number theory, 2nd edition, Springer-Verlag, Germany (1990).Google Scholar
  24. [24]
    M. Billò et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP 08 (2012) 166 [arXiv:1206.3914] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    J.A. Minahan, Duality symmetries for N = 2 supersymmetric QCD with vanishing β-functions, Nucl. Phys. B 537 (1999) 243 [hep-th/9806246] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    S.K. Ashok, M. Billò, E. Dell’Aquila, M. Frau, R.R. John and A. Lerda, Non-perturbative studies of N = 2 conformal quiver gauge theories, Fortsch. Phys. 63 (2015) 259 [arXiv:1502.05581] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  28. [28]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  33. [33]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N ) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133 [arXiv:1212.0722] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    A.-K. Kashani-Poor and J. Troost, Transformations of spherical blocks, JHEP 10 (2013) 009 [arXiv:1305.7408] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    A.-K. Kashani-Poor and J. Troost, Quantum geometry from the toroidal block, JHEP 08 (2014) 117 [arXiv:1404.7378] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • S.K. Ashok
    • 1
  • M. Billò
    • 2
  • E. Dell’Aquila
    • 1
  • M. Frau
    • 2
  • A. Lerda
    • 3
    • 2
  • M. Raman
    • 1
  1. 1.Institute of Mathematical SciencesTaramani, ChennaiIndia
  2. 2.Università di Torino, Dipartimento di Fisica and I.N.F.N. — sezione di TorinoTorinoItaly
  3. 3.Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica and I.N.F.N. — Gruppo Collegato di Alessandria — sezione di TorinoAlessandriaItaly

Personalised recommendations