Advertisement

Quarter-BPS black holes in AdS4-NUT from \( \mathcal{N}=2 \) gauged supergravity

  • Harold ErbinEmail author
  • Nick Halmagyi
Open Access
Regular Article - Theoretical Physics

Abstract

We study \( \mathcal{N}=2 \) gauged supergravity with U(1) gauge group coupled to n v vector multiplets and find quite general analytic solutions for quarter-BPS black holes with mass, NUT and dyonic Maxwell charges. The solutions we find have running scalar fields and flow in the IR region to a horizon geometry of the form AdS2 × Σ g .

Keywords

Black Holes in String Theory Supergravity Models Gauge-gravity correspondence AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    J.F. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. [4]
    N. Alonso-Alberca, P. Meessen and T. Ortin, Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783 [hep-th/0003071] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    D. Martelli, A. Passias and J. Sparks, The supersymmetric NUTs and bolts of holography, Nucl. Phys. B 876 (2013) 810 [arXiv:1212.4618] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    W.A. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    A. Gnecchi and N. Halmagyi, Supersymmetric black holes in AdS 4 from very special geometry, JHEP 04 (2014) 173 [arXiv:1312.2766] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    N. Halmagyi and T. Vanel, AdS black holes from duality in gauged supergravity, JHEP 04 (2014) 130 [arXiv:1312.5430] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    K. Hristov, C. Toldo and S. Vandoren, Phase transitions of magnetic AdS 4 black holes with scalar hair, Phys. Rev. D 88 (2013) 026019 [arXiv:1304.5187] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Gnecchi and C. Toldo, First order flow for non-extremal AdS black holes and mass from holographic renormalization, JHEP 10 (2014) 075 [arXiv:1406.0666] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    D.D.K. Chow and G. Compère, Dyonic AdS black holes in maximal gauged supergravity, Phys. Rev. D 89 (2014) 065003 [arXiv:1311.1204] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Colleoni and D. Klemm, Nut-charged black holes in matter-coupled N = 2, D = 4 gauged supergravity, Phys. Rev. D 85 (2012) 126003 [arXiv:1203.6179] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Halmagyi, BPS black hole horizons in N = 2 gauged supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    D. Astefanesei, R.B. Mann and E. Radu, Nut charged space-times and closed timelike curves on the boundary, JHEP 01 (2005) 049 [hep-th/0407110] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropoulos, V. Pozzoli and K. Siampos, Vorticity in holographic fluids, PoS(CORFU2011)076 [arXiv:1206.4351] [INSPIRE].
  24. [24]
    R.G. Leigh, A.C. Petkou and P.M. Petropoulos, Holographic three-dimensional fluids with nontrivial vorticity, Phys. Rev. D 85 (2012) 086010 [arXiv:1108.1393] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R.G. Leigh, A.C. Petkou and P.M. Petropoulos, Holographic fluids with vorticity and analogue gravity, JHEP 11 (2012) 121 [arXiv:1205.6140] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    C.W. Misner, The flatter regions of Newman, Unti and Tamburinos generalized Schwarzschild space, J. Math. Phys. 4 (1963) 924 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    D.Z. Freedman and A.K. Das, Gauge internal symmetry in extended supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    H. Lü and J.F. Vazquez-Poritz, Dynamic C metrics in gauged supergravities, Phys. Rev. D 91 (2015) 064004 [arXiv:1408.3124] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, Nucl. Phys. B 866 (2013) 72 [arXiv:1111.6930] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    D. Martelli and A. Passias, The gravity dual of supersymmetric gauge theories on a two-parameter deformed three-sphere, Nucl. Phys. B 877 (2013) 51 [arXiv:1306.3893] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    E.T. Newman and A.I. Janis, Note on the Kerr spinning particle metric, J. Math. Phys. 6 (1965) 915 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. [38]
    E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, Metric of a rotating, charged mass, J. Math. Phys. 6 (1965) 918 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    M. Demianski, New Kerr-like space-time, Phys. Lett. A42 (1972) 157 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    H. Erbin, Deciphering and generalizing Demianski-Janis-Newman algorithm, arXiv:1411.2909 [INSPIRE].
  41. [41]
    H. Erbin and L. Heurtier, Supergravity, complex parameters and the Janis-Newman algorithm, Class. Quant. Grav. 32 (2015) 165005 [arXiv:1501.02188] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    H. Erbin, Janis-Newman algorithm: simplifications and gauge field transformation, Gen. Rel. Grav. 47 (2015) 19 [arXiv:1410.2602] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    A.J. Keane, An extension of the Newman-Janis algorithm, Class. Quant. Grav. 31 (2014) 155003 [arXiv:1407.4478] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4D gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    E. Cremmer and A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet supergravity couplings, Class. Quant. Grav. 2 (1985) 445 [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  47. [47]
    S. Cecotti, Homogeneous Kahler Manifolds and T Algebras in N = 2 supergravity and superstrings, Commun. Math. Phys. 124 (1989) 23 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  48. [48]
    B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys. 149 (1992) 307 [hep-th/9112027] [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  49. [49]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    B. de Wit and A. Van Proeyen, Hidden symmetries, special geometry and quaternionic manifolds, Int. J. Mod. Phys. D 3 (1994) 31 [hep-th/9310067] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    B. de Wit and A. Van Proeyen, Isometries of special manifolds, hep-th/9505097 [INSPIRE].
  52. [52]
    M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. D 55 (1997) 3907] [hep-th/9512031] [INSPIRE].
  53. [53]
    R. Kallosh and B. Kol, E 7 symmetric area of the black hole horizon, Phys. Rev. D 53 (1996) 5344 [hep-th/9602014] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    M. Cvetič and C.M. Hull, Black holes and U duality, Nucl. Phys. B 480 (1996) 296 [hep-th/9606193] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    B.L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Duality, entropy and ADM mass in supergravity, Phys. Rev. D 79 (2009) 125010 [arXiv:0902.3973] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    S. Ferrara, A. Marrani and A. Yeranyan, On invariant structures of black hole charges, JHEP 02 (2012) 071 [arXiv:1110.4004] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    G. Bossard and S. Katmadas, Duality covariant non-BPS first order systems, JHEP 09 (2012) 100 [arXiv:1205.5461] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  58. [58]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara and P. Fré’, General matter coupled N = 2 supergravity, Nucl. Phys. B 476 (1996) 397 [hep-th/9603004] [INSPIRE].
  61. [61]
    D. Klemm, private communication.Google Scholar
  62. [62]
    R.B. Brown, Groups of type E 7, J. Reine Angew. Math. 236 (1969) 79.zbMATHMathSciNetGoogle Scholar
  63. [63]
    S. Ferrara, R. Kallosh and A. Marrani, Degeneration of groups of type E 7 and minimal coupling in supergravity, JHEP 06 (2012) 074 [arXiv:1202.1290] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  64. [64]
    G. Bossard and S. Katmadas, Duality covariant multi-centre black hole systems, JHEP 08 (2013) 007 [arXiv:1304.6582] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Paris 06, UMR 7589, LPTHEParisFrance
  2. 2.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations