On modular transformations of toric conformal blocks

Open Access
Regular Article - Theoretical Physics

Abstract

We derive and solve the difference equations on the toric modular kernel following from the consistency relations in the fusion algebra. The result is explicit and simple series expansion for the toric modular kernel of non-degenerate Virasoro conformal blocks. We show that this expansion is equivalent to the celebrated integral representation due to J. Teschner.

Keywords

Conformal and W Symmetry Nonperturbative Effects Quantum Groups 

References

  1. [1]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031 [INSPIRE].
  3. [3]
    N. Nemkov, On fusion kernel in Liouville theory, arXiv:1409.3537 [INSPIRE].
  4. [4]
    E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    D. Galakhov, A. Mironov and A. Morozov, S-duality and modular transformation as a non-perturbative deformation of the ordinary pq-duality, JHEP 06 (2014) 050 [arXiv:1311.7069] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].
  10. [10]
    B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \( U(q)\left(\mathrm{S}\mathrm{L}\left(2,\mathrm{\mathbb{R}}\right)\right) \), Commun. Math. Phys. 224 (2001) 613 [math/0007097] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization of \( {\mathrm{\mathcal{M}}}_{\mathrm{flat}} \) and conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    D. Galakhov, A. Mironov and A. Morozov, S-duality as a β-deformed Fourier transform, JHEP 08 (2012) 067 [arXiv:1205.4998] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Deformed N = 2 theories, generalized recursion relations and S-duality, JHEP 04 (2013) 039 [arXiv:1302.0686] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat kernel and S-duality in N = 2 theories, JHEP 11 (2013) 123 [arXiv:1307.6648] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    N. Nemkov, S-duality as Fourier transform for arbitrary ϵ 1 , ϵ 2, J. Phys. 47 (2014) 105401 [arXiv:1307.0773] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (MIPT)DolgoprudnyRussia
  2. 2.Institute for Theoretical and Experimental Physics (ITEP)MoscowRussia

Personalised recommendations