The goldstone and goldstino of supersymmetric inflation

Open Access
Regular Article - Theoretical Physics

Abstract

We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield XNL containing the goldstino and satisfying XNL2 = 0, and a real superfield BNL containing both the goldstino and the goldstone, satisfying XNLBNL = BNL3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

Keywords

Supersymmetric Effective Theories Cosmology of Theories beyond the SM 

References

  1. [1]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    M. Yamaguchi, Supergravity based inflation models: a review, Class. Quant. Grav. 28 (2011) 103001 [arXiv:1101.2488] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    D. Baumann and L. McAllister, Inflation and string theory, arXiv:1404.2601 [INSPIRE].
  8. [8]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D. Baumann and D. Green, Supergravity for effective theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Minimal inflation, Phys. Lett. B 690 (2010) 68 [arXiv:1001.0010] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    L. Álvarez-Gaumé, C. Gomez and R. Jimenez, A minimal inflation scenario, JCAP 03 (2011) 027 [arXiv:1101.4948] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production, JCAP 03 (2012) 017 [arXiv:1110.3984] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    J. Ellis and N.E. Mavromatos, Inflation induced by gravitino condensation in supergravity, Phys. Rev. D 88 (2013) 085029 [arXiv:1308.1906] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    R. Kallosh, A. Linde and M. Scalisi, Inflation, de Sitter landscape and super-Higgs effect, JHEP 03 (2015) 111 [arXiv:1411.5671] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    N.E. Mavromatos, Gravitino condensates in the early universe and inflation, EPJ Web Conf. 95 (2015) 03023 [arXiv:1412.6437] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  25. [25]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].
  26. [26]
    BICEP2 and Planck collaborations, P.A.R. Ade et al., Joint analysis of BICEP2/Keck Array and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
  27. [27]
    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and detectability of quasi-single field inflation in the large-scale structure and Cosmic Microwave Background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias, JCAP 08 (2012) 019 [arXiv:1204.6324] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    V. Assassi, D. Baumann, D. Green and L. McAllister, Planck-suppressed operators, JCAP 01 (2014) 033 [arXiv:1304.5226] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    N. Craig and D. Green, Testing split supersymmetry with inflation, JHEP 07 (2014) 102 [arXiv:1403.7193] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of massive primordial fields on large-scale structure, arXiv:1504.05993 [INSPIRE].
  34. [34]
    A. Kehagias and A. Riotto, High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys. 63 (2015) 531 [arXiv:1501.03515] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    N. Arkani-Hamed, H.-C. Cheng, M. Luty and J. Thaler, Universal dynamics of spontaneous Lorentz violation and a new spin-dependent inverse-square law force, JHEP 07 (2005) 029 [hep-ph/0407034] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    N. Arkani-Hamed, H.-C. Cheng, M.A. Luty, S. Mukohyama and T. Wiseman, Dynamics of gravity in a Higgs phase, JHEP 01 (2007) 036 [hep-ph/0507120] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    H.-C. Cheng, M.A. Luty, S. Mukohyama and J. Thaler, Spontaneous Lorentz breaking at high energies, JHEP 05 (2006) 076 [hep-th/0603010] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X, ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Koehn, J.-L. Lehners and B. Ovrut, Ghost condensate in N = 1 supergravity, Phys. Rev. D 87 (2013) 065022 [arXiv:1212.2185] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Shapere and F. Wilczek, Classical time crystals, Phys. Rev. Lett. 109 (2012) 160402 [arXiv:1202.2537] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    F. Wilczek, Quantum time crystals, Phys. Rev. Lett. 109 (2012) 160401 [arXiv:1202.2539] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    P. Bruno, Impossibility of spontaneously rotating time crystals: a no-go theorem, Phys. Rev. Lett. 111 (2013) 070402 [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    K. Benakli, Y. Oz and G. Policastro, The super-Higgs mechanism in fluids, JHEP 02 (2014) 015 [arXiv:1310.5002] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    K. Benakli, L. Darmé and Y. Oz, The slow gravitino, JHEP 10 (2014) 121 [arXiv:1407.8321] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    G.F. Giudice, I. Tkachev and A. Riotto, Nonthermal production of dangerous relics in the early universe, JHEP 08 (1999) 009 [hep-ph/9907510] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, U.S.A. (1992) [INSPIRE].Google Scholar
  48. [48]
    L. Senatore, K.M. Smith and M. Zaldarriaga, Non-gaussianities in single field inflation and their optimal limits from the WMAP 5-year data, JCAP 01 (2010) 028 [arXiv:0905.3746] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    S. Sasaki, M. Yamaguchi and D. Yokoyama, Supersymmetric DBI inflation, Phys. Lett. B 718 (2012) 1 [arXiv:1205.1353] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    R. Gwyn and J.-L. Lehners, Non-canonical inflation in supergravity, JHEP 05 (2014) 050 [arXiv:1402.5120] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    F. D’Eramo, J. Thaler and Z. Thomas, Anomaly mediation from unbroken supergravity, JHEP 09 (2013) 125 [arXiv:1307.3251] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  52. [52]
    D. Bertolini, J. Thaler and Z. Thomas, Super-tricks for superspace, arXiv:1302.6229 [INSPIRE].
  53. [53]
    K. Kratzert, Finite temperature supersymmetry: the Wess-Zumino model, Annals Phys. 308 (2003) 285 [hep-th/0303260] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  54. [54]
    C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, Phys. Rev. D 84 (2011) 085012 [arXiv:1104.2598] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A.G. Cohen and D.B. Kaplan, Thermodynamic generation of the baryon asymmetry, Phys. Lett. B 199 (1987) 251 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A.G. Cohen and D.B. Kaplan, Spontaneous baryogenesis, Nucl. Phys. B 308 (1988) 913 [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    A. Hook, Baryogenesis from Hawking radiation, Phys. Rev. D 90 (2014) 083535 [arXiv:1404.0113] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.T. D’Agnolo and A. Hook, Selfish dark matter, Phys. Rev. D 91 (2015) 115020 [arXiv:1504.00361] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A.L. Maroto and A. Mazumdar, Production of spin 3/2 particles from vacuum fluctuations, Phys. Rev. Lett. 84 (2000) 1655 [hep-ph/9904206] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    G.F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos in the early universe, JHEP 11 (1999) 036 [hep-ph/9911302] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after inflation, Phys. Rev. D 61 (2000) 103503 [hep-th/9907124] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav. 17 (2000) 4269 [Erratum ibid. 21 (2004) 5017] [hep-th/0006179] [INSPIRE].
  63. [63]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock inflation at all loops, JHEP 09 (2013) 148 [arXiv:1210.6048] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  67. [67]
    V. Assassi, D. Baumann and D. Green, Symmetries and loops in inflation, JHEP 02 (2013) 151 [arXiv:1210.7792] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  68. [68]
    D. Green, M. Lewandowski, L. Senatore, E. Silverstein and M. Zaldarriaga, Anomalous dimensions and non-gaussianity, JHEP 10 (2013) 171 [arXiv:1301.2630] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time structure of the Bunch-Davies de Sitter wavefunction, arXiv:1406.5490 [INSPIRE].
  70. [70]
    D. Marolf and I.A. Morrison, The IR stability of de Sitter: loop corrections to scalar propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].ADSGoogle Scholar
  71. [71]
    D. Krotov and A.M. Polyakov, Infrared sensitivity of unstable vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  72. [72]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].CrossRefADSGoogle Scholar
  73. [73]
    A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal invariance and the four point scalar correlator in slow-roll inflation, JHEP 07 (2014) 011 [arXiv:1401.1426] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    N. Kundu, A. Shukla and S.P. Trivedi, Constraints from conformal symmetry on the three point scalar correlator in inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  75. [75]
    H.P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos, Phys. Rev. Lett. 87 (2001) 051302 [hep-ph/0102264] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Yonatan Kahn
    • 1
  • Daniel A. Roberts
    • 1
  • Jesse Thaler
    • 1
  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations