Advertisement

Journal of High Energy Physics

, 2014:177 | Cite as

Neutrino masses and conformal electro-weak symmetry breaking

  • Manfred Lindner
  • Steffen Schmidt
  • Juri Smirnov
Open Access
Article

Abstract

Dimensional transmutation in classically conformal invariant theories may explain the electro-weak scale and the fact that so far nothing but the Standard Model (SM) particles have been observed. We discuss in this paper implications of this type of symmetry breaking for neutrino mass generation.

Keywords

Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2 (1970) 1541 [INSPIRE].ADSGoogle Scholar
  2. [2]
    W.A. Bardeen, On naturalness in the standard model, (1995).Google Scholar
  3. [3]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops, Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass, Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].ADSGoogle Scholar
  10. [10]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K.A. Meissner and H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260 [arXiv:0710.2840] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    K.A. Meissner and H. Nicolai, Conformal invariance from non-conformal gravity, Phys. Rev. D 80 (2009) 086005 [arXiv:0907.3298] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended standard model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Holthausen, M. Lindner and M.A. Schmidt, Radiative symmetry breaking of the minimal left-right symmetric model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R. Foot, A. Kobakhidze and R.R. Volkas, Cosmological constant in scale-invariant theories, Phys. Rev. D 84 (2011) 075010 [arXiv:1012.4848] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V.V. Khoze, Inflation and dark matter in the Higgs portal of classically scale invariant standard model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Kawamura, Naturalness, conformal symmetry and duality, PTEP 2013 (2013) 113B04 [arXiv:1308.5069] [INSPIRE].Google Scholar
  20. [20]
    F. Gretsch and A. Monin, Dilaton: saving conformal symmetry, arXiv:1308.3863 [INSPIRE].
  21. [21]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical naturalness and dynamical breaking of classical scale invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  24. [24]
    V.V. Khoze and G. Ro, Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Farzinnia, H.-J. He and J. Ren, Natural electroweak symmetry breaking from scale invariant Higgs mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    S. Abel and A. Mariotti, Novel Higgs potentials from gauge mediation of exact scale breaking, arXiv:1312.5335 [INSPIRE].
  28. [28]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, Poincaré protection for a natural electroweak scale, Phys. Rev. D 89 (2014) 115018 [arXiv:1310.0223] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C.T. Hill, Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
  31. [31]
    S. Benic and B. Radovcic, Electroweak breaking and dark matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Smirnov, Regularization of vacuum fluctuations and frame dependence, arXiv:1402.1490 [INSPIRE].
  34. [34]
    K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the standard modelmore evidence for classical scale invariance, JHEP 06 (2014) 154 [arXiv:1405.3987] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P.H. Chankowski, A. Lewandowski, K.A. Meissner and H. Nicolai, Softly broken conformal symmetry and the stability of the electroweak scale, arXiv:1404.0548 [INSPIRE].
  36. [36]
    A. Farzinnia and J. Ren, Higgs partner searches and dark matter phenomenology in a classically scale invariant Higgs boson sector, Phys. Rev. D 90 (2014) 015019 [arXiv:1405.0498] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Ishiwata, Dark matter in classically scale-invariant two singlets standard model, Phys. Lett. B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Cheng, Dark matter and scale invariance, math-ph/0407010 [INSPIRE].
  39. [39]
    R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K.A. Meissner and H. Nicolai, Neutrinos, axions and conformal symmetry, Eur. Phys. J. C 57 (2008) 493 [arXiv:0803.2814] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.S.C. Law and K.L. McDonald, The simplest models of radiative neutrino mass, Int. J. Mod. Phys. A 29 (2014) 1450064 [arXiv:1303.6384] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  43. [43]
    E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. Deppisch and J.W.F. Valle, Enhanced lepton flavor violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651 [arXiv:1401.1507] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electro-weak fits with TeV-scale sterile neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.F. Beacom et al., Pseudo-Dirac neutrinos: a challenge for neutrino telescopes, Phys. Rev. Lett. 92 (2004) 011101 [hep-ph/0307151] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    GERDA collaboration, C. Macolino, Results on neutrinoless double beta decay from GERDA Phase I, Mod. Phys. Lett. A 29 (2014) 1430001 [arXiv:1312.0562] [INSPIRE].Google Scholar
  52. [52]
    A. de Gouvêa, W.-C. Huang and J. Jenkins, Pseudo-Dirac neutrinos in the new standard model, Phys. Rev. D 80 (2009) 073007 [arXiv:0906.1611] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  56. [56]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s} \) =8 TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Q.-H. Cao, E. Ma and G. Shaughnessy, Dark Matter: The Leptonic Connection, Phys. Lett. B 673 (2009) 152 [arXiv:0901.1334] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar dark matter models with significant internal bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Toma, Internal bremsstrahlung signature of real scalar dark matter and consistency with thermal relic density, Phys. Rev. Lett. 111 (2013) 091301 [arXiv:1307.6181] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    O. Antipin, M. Mojaza and F. Sannino, Conformal extensions of the standard model with Veltman conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A.D. Dolgov and S.H. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002) 339 [hep-ph/0009083] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. Bezrukov, H. Hettmansperger and M. Lindner, KeV sterile neutrino dark matter in gauge extensions of the standard model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states with the 2011 data at 7 TeV, (2012).Google Scholar
  68. [68]
    S.M. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Heeck and H. Zhang, Exotic charges, multicomponent dark matter and light sterile neutrinos, JHEP 05 (2013) 164 [arXiv:1211.0538] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    A. Zee, Charged scalar field and quantum number violations, Phys. Lett. B 161 (1985) 141 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Manfred Lindner
    • 1
  • Steffen Schmidt
    • 1
  • Juri Smirnov
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations