Advertisement

Journal of High Energy Physics

, 2014:139 | Cite as

Higgs boson production through \( b\overline{b} \) annihilation at threshold in N3LO QCD

  • Taushif Ahmed
  • Narayan RanaEmail author
  • V. Ravindran
Open Access
Article

Abstract

We present threshold enhanced N3LO QCD corrections to inclusive Higgs production through bottom anti-bottom annihilation at hadron colliders using threshold resummed cross section. The resummed cross section is obtained using factorization properties and Sudakov resummation of the inclusive cross section. We use the recent results on threshold N3LO corrections in QCD for Drell-Yan production and three loop QCD corrections to Higgs form factor with bottom anti-bottom quark to achieve this task. This is the first step towards the evaluation of complete N3LO result. We have numerically demonstrated the importance of such corrections at the LHC.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, Precision electroweak measurements and constraints on the standard model, PH-EP-2010-095, CERN, Geneva Switzerland (2010).
  6. [6]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to ppH + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Han and S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D.A. Dicus and S. Willenbrock, Higgs boson production from heavy quark fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F.I. Olness and W.-K. Tung, When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD based parton model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock, Neutral and charged Higgs detection: heavy quark fusion, top quark mass dependence and rare decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L. Reina and S. Dawson, Next-to-leading order results for \( t\overline{t}h \) production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].ADSGoogle Scholar
  27. [27]
    W. Beenakker et al., NLO QCD corrections to \( t\overline{t}H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Raitio and W.W. Wada, Higgs boson production at large transverse momentum in QCD, Phys. Rev. D 19 (1979) 941 [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys. B 143 (1978) 521 [Erratum ibid. B 146 (1978) 544] [INSPIRE].
  34. [34]
    T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].
  37. [37]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D. de Florian and J. Mazzitelli, A next-to-next-to-leading order calculation of soft-virtual cross sections, JHEP 12 (2012) 088 [arXiv:1209.0673] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Idilbi, X.-D. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].ADSGoogle Scholar
  49. [49]
    V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan production at threshold in N 3 LO QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs and Drell-Yan production at threshold: the one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N 3 LL accuracy and soft-virtual cross sections at N 3 LO, Nucl. Phys. B 888 (2014) 75 [arXiv:1405.4827] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    N. Kidonakis, Collinear and soft gluon corrections to Higgs production at NNNLO, Phys. Rev. D 77 (2008) 053008 [arXiv:0711.0142] [INSPIRE].ADSGoogle Scholar
  58. [58]
    T. Gehrmann and D. Kara, The \( Hb\overline{b} \) form factor to three loops in QCD, JHEP 09 (2014) 174 [arXiv:1407.8114] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low function of QCD in the three loop approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    O.V. Tarasov, Anomalous dimensions of quark masses in three loop approximation, JINR-P2-82-900, (1982) [INSPIRE].
  61. [61]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [Zh. Eksp. Teor. Fiz. 30 (1956) 87] [INSPIRE].
  64. [64]
    A.H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteAllahabadIndia
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations