Advertisement

Journal of High Energy Physics

, 2014:132 | Cite as

Derivation of the action and symmetries of the q-deformed AdS5 × S 5 superstring

  • F. DelducEmail author
  • M. Magro
  • B. Vicedo
Open Access
Article

Abstract

We recently proposed an integrable q-deformation of the AdS5 × S 5 superstring action. Here we give details on the hamiltonian origin and construction of this deformation. The procedure is a generalization of the one previously developed for deforming principal chiral and symmetric space σ-models. We also show that the original \( \mathfrak{p}\mathfrak{s}\mathfrak{u}\left(2,2\Big|4\right) \) symmetry is replaced in the deformed theory by a classical analog of the quantum group \( {U}_q\left(\mathfrak{p}\mathfrak{s}\mathfrak{u}\left(2,2\Big|4\right)\right) \) with q real. The relation between q and the deformation parameter η entering the action is given. The framework used to derive the deformation also enables to prove that at the hamiltonian level, the “maximal deformation” limit corresponds to an undeformed semi-symmetric space σ-model with bosonic part dS5 × H 5. Finally, we discuss the various freedoms in the construction.

Keywords

Integrable Field Theories Sigma Models AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maillet, Kac-Moody Algebra and Extended Yang-Baxter Relations in the O(N) Nonlinear σ Model, Phys. Lett. B 162 (1985) 137 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.M. Maillet, New Integrable Canonical Structures in Two-dimensional Models, Nucl. Phys. B 269 (1986) 54 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    F. Delduc, M. Magro and B. Vicedo, Alleviating the non-ultralocality of coset σ-models through a generalized Faddeev-Reshetikhin procedure, JHEP 08 (2012) 019 [arXiv:1204.0766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Magro, The Classical Exchange Algebra of AdS5 × S 5, JHEP 01 (2009) 021 [arXiv:0810.4136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    B. Vicedo, Hamiltonian dynamics and the hidden symmetries of the AdS5 × S 5 superstring, JHEP 01 (2010) 102 [arXiv:0910.0221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Delduc, M. Magro and B. Vicedo, A lattice Poisson algebra for the Pohlmeyer reduction of the AdS5 × S 5 superstring, Phys. Lett. B 713 (2012) 347 [arXiv:1204.2531] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Delduc, M. Magro and B. Vicedo, Alleviating the non-ultralocality of the AdS5 × S 5 superstring, JHEP 10 (2012) 061 [arXiv:1206.6050] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure, Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Magro, Review of AdS/CFT Integrability, Chapter II.3: σ-model, Gauge Fixing, Lett. Math. Phys. 99 (2012) 149 [arXiv:1012.3988] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A.G. Reyman and M.A. Semenov-Tian-Shansky, Compatible Poisson structures for Lax equations: an R matrix approach, Phys. Lett. A 130 (1988) 456 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L.D. Faddeev and N.Y. Reshetikhin, Integrability of the Principal Chiral Field Model in (1+1)-dimension, Annals Phys. 167 (1986) 227 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    V.V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl. 17 (1983) 200 [INSPIRE].CrossRefzbMATHGoogle Scholar
  17. [17]
    S. Khoroshkin and V. Tolstoy, Universal R-matrix for Quantized (super)Algebras, Commun. Math. Phys. 141 (1991) 599.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Asherova, Y.F. Smirnov and V.N. Tolstoi, Description of a class of projection operators for semisimple complex Lie algebras, Math. Notes 26 (1979) 499.CrossRefzbMATHGoogle Scholar
  19. [19]
    V.N. Tolstoi, Extremal projectors for Lie algebras and superalgebras of finite growth, Russ. Math. Surv. 44 (1989) 257.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Floreanini, D.A. Leites and L. Vinet, On the Defining relations of quantum superalgebras, Lett. Math. Phys. 23 (1991) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    V.K. Dobrev, Note on Centrally Extended su(2/2) and Serre Relations, Fortsch. Phys. 57 (2009) 542 [arXiv:0903.0511] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Kawaguchi and K. Yoshida, Hybrid classical integrability in squashed σ-models, Phys. Lett. B 705 (2011) 251 [arXiv:1107.3662] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, On the classical equivalence of monodromy matrices in squashed σ-model, JHEP 06 (2012) 082 [arXiv:1203.3400] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, The classical origin of quantum affine algebra in squashed σ-models, JHEP 04 (2012) 115 [arXiv:1201.3058] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, (1994).Google Scholar
  26. [26]
    T. Kameyama and K. Yoshida, Anisotropic Landau-Lifshitz σ-models from q-deformed AdS5 × S 5 superstrings, JHEP 08 (2014) 110 [arXiv:1405.4467] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard Model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    N. Beisert, The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain, J. Phys. A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, q-Deformation of the AdS5 × S 5 Superstring S-matrix and its Relativistic Limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, On the exact spectrum and mirror duality of the (AdS5 × S 5)η superstring, arXiv:1403.6104 [INSPIRE].
  31. [31]
    G. Arutyunov and S.J. van Tongeren, The AdS5 × S 5 mirror model as a string, arXiv:1406.2304 [INSPIRE].
  32. [32]
    B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdSn × S n supercosets, arXiv:1403.5517 [INSPIRE].
  33. [33]
    B. Hoare and A.A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, A Relativistic Relative of the Magnon S-matrix, JHEP 11 (2011) 048 [arXiv:1107.0628] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, Bound States of the q-Deformed AdS5 × S 5 Superstring S-matrix, JHEP 10 (2012) 076 [arXiv:1206.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, Restoring Unitarity in the q-Deformed World-Sheet S-matrix, JHEP 10 (2013) 050 [arXiv:1303.1447] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Mikhailov and S. Schäfer-Nameki, sine-Gordon-like action for the Superstring in AdS5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Hoare and A.A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS5 × S 5 superstring theory, JHEP 02 (2010) 094 [arXiv:0912.2958] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    T.J. Hollowood and J.L. Miramontes, Symplectic Deformations of Integrable Field Theories and AdS/CFT, arXiv:1403.1899 [INSPIRE].
  41. [41]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, A Jordanian deformation of AdS space in type IIB supergravity, JHEP 06 (2014) 146 [arXiv:1402.6147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Matsumoto and K. Yoshida, Lunin-Maldacena backgrounds from the classical Yang-Baxter equationtowards the gravity/CYBE correspondence, JHEP 06 (2014) 135 [arXiv:1404.1838] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Matsumoto and K. Yoshida, Integrability of classical strings dual for noncommutative gauge theories, JHEP 06 (2014) 163 [arXiv:1404.3657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    P.M. Crichigno, T. Matsumoto and K. Yoshida, Deformations of T 1,1 as Yang-Baxter σ-models, arXiv:1406.2249 [INSPIRE].
  47. [47]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of \( \mathcal{N}=4 \) super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    N. Beisert and M. Staudacher, The \( \mathcal{N}=4 \) SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    H. Yamane, Universal R-matrices for quantum groups associated to simple Lie superalgebras, Proc. Jpn. Acad. A 67 (1991) 108.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    R.B. Zhang, Serre presentations of Lie superalgebras, arXiv:1101.3114 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique, ENS Lyon et CNRS UMR 5672Université de LyonLYON Cedex 07France
  2. 2.School of Physics, Astronomy and MathematicsUniversity of HertfordshireHatfieldUnited Kingdom

Personalised recommendations