Skip to main content

From multiple unitarity cuts to the coproduct of Feynman integrals

A preprint version of the article is available at arXiv.

Abstract

We develop techniques for computing and analyzing multiple unitarity cuts of Feynman integrals, and reconstructing the integral from these cuts. We study the relations among unitarity cuts of a Feynman integral computed via diagrammatic cutting rules, the discontinuity across the corresponding branch cut, and the coproduct of the integral. For single unitarity cuts, these relations are familiar. Here we show that they can be generalized to sequences of unitarity cuts in different channels. Using concrete one- and two-loop scalar integral examples we demonstrate that it is possible to reconstruct a Feynman integral from either single or double unitarity cuts. Our results offer insight into the analytic structure of Feynman integrals as well as a new approach to computing them.

References

  1. [1]

    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    G. ’t Hooft and M. Veltman, DIAGRAMMAR, NATO Adv. Study Inst. Ser. B Phys. 4 (1974) 177–322

    Google Scholar 

  3. [3]

    M. Veltman, Diagrammatica: The Path to Feynman rules, Cambridge Lect. Notes Phys. 4 (1994) 1.

    Google Scholar 

  4. [4]

    L. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    E. Remiddi, Dispersion Relations for Feynman Graphs, Helv. Phys. Acta 54 (1982) 364 [INSPIRE].

    MathSciNet  Google Scholar 

  6. [6]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N =4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in N =4 super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    R. Britto and B. Feng, Integral coefficients for one-loop amplitudes, JHEP 02 (2008) 095 [arXiv:0711.4284] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    P. Mastrolia, Double-Cut of Scattering Amplitudes and StokesTheorem, Phys. Lett. B 678 (2009) 246 [arXiv:0905.2909] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].

  17. [17]

    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The Master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    S. Müller-Stach, S. Weinzierl and R. Zayadeh, A Second-Order Differential Equation for the Two-Loop Sunrise Graph with Arbitrary Masses, Commun. Num. Theor. Phys. 6 (2012) 203 [arXiv:1112.4360] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, arXiv:1302.7004 [INSPIRE].

  22. [22]

    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, arXiv:1309.5865 [INSPIRE].

  23. [23]

    E. Remiddi and L. Tancredi, Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph, Nucl. Phys. B 880 (2014) 343 [arXiv:1311.3342] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M.Y. Kalmykov and O. Veretin, Single scale diagrams and multiple binomial sums, Phys. Lett. B 483 (2000) 315 [hep-th/0004010] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    M.Y. Kalmykov, B.F.L. Ward and S.A. Yost, Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ϵ-expansion of generalized hypergeometric functions with one half-integer value of parameter, JHEP 10 (2007) 048 [arXiv:0707.3654] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    R. Bonciani, G. Degrassi and A. Vicini, On the Generalized Harmonic Polylogarithms of One Complex Variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

    MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].

  35. [35]

    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathfrak{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. [36]

    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].

  38. [38]

    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].

  41. [41]

    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M. Argeri et al., Magnus and Dyson Series for Master Integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    C. Bogner and S. Weinzierl, Periods and Feynman integrals, J. Math. Phys. 50 (2009) 042302 [arXiv:0711.4863] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N =4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    J.M. Drummond, Generalised ladders and single-valued polylogarithms, JHEP 02 (2013) 092 [arXiv:1207.3824] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  51. [51]

    F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP 11 (2012) 114 [arXiv:1209.2722] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J. Drummond et al., Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N =4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta. 33 (1960) 257.

    MathSciNet  MATH  Google Scholar 

  61. [61]

    O. Steinmann, Wightman-funktionen und retardierten kommutatoren, Helv. Phys. Acta. 33 (1960) 347.

    MathSciNet  MATH  Google Scholar 

  62. [62]

    H.P. Stapp, Inclusive cross-sections are discontinuities, Phys. Rev. D 3 (1971) 3177 [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    C. Anastasiou, E.W.N. Glover and C. Oleari, Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B 572 (2000) 307 [hep-ph/9907494] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  66. [66]

    N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    A.I. Davydychev and M.Y. Kalmykov, New results for the ϵ-expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    T.G. Birthwright, E.W.N. Glover and P. Marquard, Master integrals for massless two-loop vertex diagrams with three offshell legs, JHEP 09 (2004) 042 [hep-ph/0407343] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    P. Ball, V.M. Braun and H.G. Dosch, Form-factors of semileptonic D decays from QCD sum rules, Phys. Rev. D 44 (1991) 3567 [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    P. Mastrolia, On Triple-cut of scattering amplitudes, Phys. Lett. B 644 (2007) 272 [hep-th/0611091] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. [71]

    R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon. 24 (1963) 697 [INSPIRE].

    MathSciNet  Google Scholar 

  72. [72]

    R. Feynman, Problems in quantizing the gravitational field, and the massless yang-mills field, in Magic without magic, J. Klauder ed., San Francisco (1972), pp. 355–375.

  73. [73]

    R. Feynman, Closed loop and tree diagrams, in Magic without magic, J. Klauder ed., San Francisco (1972), pp. 377–408.

  74. [74]

    T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. [75]

    R. Eden, P. Landshoff, D. Olive and J. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge U.K. (1966).

    MATH  Google Scholar 

  76. [76]

    W.L. van Neerven, Dimensional Regularization of Mass and Infrared Singularities in Two Loop On-shell Vertex Functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    F.C. Brown, Single-valued multiple polylogarithms in one variable, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 527.

    Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel Abreu.

Additional information

ArXiv ePrint: 1401.3546

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abreu, S., Britto, R., Duhr, C. et al. From multiple unitarity cuts to the coproduct of Feynman integrals. J. High Energ. Phys. 2014, 125 (2014). https://doi.org/10.1007/JHEP10(2014)125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2014)125

Keywords

  • Scattering Amplitudes
  • Supersymmetric gauge theory