Advertisement

Journal of High Energy Physics

, 2014:122 | Cite as

Global and local properties of AdS 2 higher spin gravity

  • K. B. AlkalaevEmail author
Open Access
Article

Abstract

Two-dimensional BF theory with infinitely many higher spin fields is proposed. It is interpreted as the AdS 2 higher spin gravity model describing a consistent interaction between local fields in AdS 2 space including gravitational field, higher spin partially-massless fields, and dilaton fields. We carry out analysis of the frame-like and the metric-like formulation of the theory. Infinite-dimensional higher spin global algebras and their finite-dimensional truncations are realized in terms of o(2, 1) − sp(2) Howe dual auxiliary variables.

Keywords

Higher Spin Gravity Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].
  2. [2]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  3. [3]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  6. [6]
    A.K.H. Bengtsson and I. Bengtsson, HigherSpinsin One and Two Space-time Dimensions, Phys. Lett. B 174 (1986) 294 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E.S. Fradkin and V.Y. Linetsky, Higher Spin Symmetry in One-dimension and Two-dimensions. 1., Mod. Phys. Lett. A 4 (1989) 2635 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    M.A. Vasiliev, Higher spin gauge interactions for matter fields in two-dimensions, Phys. Lett. B 363 (1995) 51 [hep-th/9511063] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.-J. Rey, News from Higher Spins: W , Black Holes and Entropy, talk given at the workshop Higher spins and holography, Simons center, March 2011.Google Scholar
  10. [10]
    K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A 47 (2014) 365401 [arXiv:1311.5119] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  11. [11]
    D. Grumiller, M. Leston and D. Vassilevich, Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Bergshoeff, M. Blencowe, and K. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Henneaux and S.-J. Rey, Nonlinear W inf inity as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J.M.F. Labastida, M. Pernici and E. Witten, Topological Gravity in Two-Dimensions, Nucl. Phys. B 310 (1988) 611 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Montano and J. Sonnenschein, The Topology of Moduli Space and Quantum Field Theory, Nucl. Phys. B 324 (1989) 348 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E.P. Verlinde and H.L. Verlinde, A Solution of Two-dimensional Topological Quantum Gravity, Nucl. Phys. B 348 (1991) 457 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    K. Li, Construction of topological W(3) gravity, Phys. Lett. B 251 (1990) 54 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B.M. Barbashov, V.V. Nesterenko and A.M. Chervyakov, The solitons in some geometrical field theories, Theor. Math. Phys. 40 (1979) 572 [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Jackiw, in Quantum theory of Gravity, S. Christansen ed., Hilger, Bristol, 1984.Google Scholar
  23. [23]
    T. Fukuyama and K. Kamimura, Gauge Theory of Two-dimensional Gravity, Phys. Lett. B 160 (1985) 259 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    K. Isler and C.A. Trugenberger, A Gauge Theory of Two-dimensional Quantum Gravity, Phys. Rev. Lett. 63 (1989) 834 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A.H. Chamseddine and D. Wyler, Topological Gravity in (1 + 1)-dimensions, Nucl. Phys. B 340 (1990) 595 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Deser and R.I. Nepomechie, Anomalous Propagation of Gauge Fields in Conformally Flat Spaces, Phys. Lett. B 132 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Deser and R.I. Nepomechie, Gauge Invariance Versus Masslessness in de Sitter Space, Annals Phys. 154 (1984) 396 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
  30. [30]
    E.D. Skvortsov and M.A. Vasiliev, Geometric formulation for partially massless fields, Nucl. Phys. B 756 (2006) 117 [hep-th/0601095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y. Zinoviev, On massive spin 2 interactions, Nucl. Phys. B 770 (2007) 83 [hep-th/0609170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R.R. Metsaev, Gravitational and higher-derivative interactions of massive spin 5/2 field in (A)dS space, Phys. Rev. D 77 (2008) 025032 [hep-th/0612279] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I.L. Buchbinder, T.V. Snegirev, Y. Zinoviev and Y. Zinoviev, Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS 3 space, Phys. Lett. B 716 (2012) 243 [arXiv:1207.1215] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [arXiv:1203.6578] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Boulanger, D. Ponomarev and E.D. Skvortsov, Non-abelian cubic vertices for higher-spin fields in anti-de Sitter space, JHEP 05 (2013) 008 [arXiv:1211.6979] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    B.L. Feigin, Lie algebras gl(λ) and cohomologies of Lie algebras of differential operators, Russian Math. Surv. 43 (1988) 169.ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    M.A. Vasiliev, Quantization on sphere and high spin superalgebras, JETP Lett. 50 (1989) 374 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    C.N. Pope, L.J. Romans and X. Shen, W (infinity) and the Racah-wigner Algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    C.R. Nappi, Some Properties of an Analog of the Nonlinear σ Model, Phys. Rev. D 21 (1980) 418 [INSPIRE].ADSGoogle Scholar
  41. [41]
    E.S. Fradkin and A.A. Tseytlin, Quantum Equivalence of Dual Field Theories, Annals Phys. 162 (1985) 31 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    T. Hartman and A. Strominger, Central Charge for AdS 2 Quantum Gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200] [INSPIRE].
  47. [47]
    O.V. Shaynkman and M.A. Vasiliev, Scalar field in any dimension from the higher spin gauge theory perspective, Theor. Math. Phys. 123 (2000) 683 [hep-th/0003123] [INSPIRE].CrossRefzbMATHGoogle Scholar
  48. [48]
    E.D. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R. Jackiw, Gauge theories for gravity on a line, Theor. Math. Phys. 92 (1992) 979 [hep-th/9206093] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.E. Konstein and M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Massless Representations, Nucl. Phys. B 331 (1990) 475 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    X. Bekaert, Higher spin algebras as higher symmetries, arXiv:0704.0898 [INSPIRE].
  53. [53]
    N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    F.A. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 3 (1989) 2.MathSciNetzbMATHGoogle Scholar
  56. [56]
    K.B. Alkalaev, On manifestly sp(2) invariant formulation of quadratic higher spin Lagrangians, JHEP 06 (2008) 081 [arXiv:0711.3639] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E. Bergshoeff, B. de Wit and M.A. Vasiliev, The Structure of the superW(infinity) (lambda) algebra, Nucl. Phys. B 366 (1991) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    E. Sezgin and P. Sundell, Doubletons and 5 − D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    E. Sezgin and P. Sundell, 7 − D bosonic higher spin theory: Symmetry algebra and linearized constraints, Nucl. Phys. B 634 (2002) 120 [hep-th/0112100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    K.B. Alkalaev and M.A. Vasiliev, N = 1 supersymmetric theory of higher spin gauge fields in AdS 5 at the cubic level, Nucl. Phys. B 655 (2003) 57 [hep-th/0206068] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    A. Sagnotti, E. Sezgin and P. Sundell, On higher spins with a strong Sp(2,R) condition, hep-th/0501156 [INSPIRE].
  62. [62]
    K. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, JHEP 03 (2011) 031 [arXiv:1011.6109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Realizations in Terms of Quantum Operators, Fortsch. Phys. 36 (1988) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    R. Jackiw, Gauge covariant conformal transformations, Phys. Rev. Lett. 41 (1978) 1635 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 Gravity in Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    N. Boulanger, P. Sundell and M. Valenzuela, Three-dimensional fractional-spin gravity, JHEP 02 (2014) 052 [arXiv:1312.5700] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev. D 45 (1992) 1005 [hep-th/9111056] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    D. Cangemi and R. Jackiw, Geometric gravitational forces on particles moving in a line, Phys. Lett. B 299 (1993) 24 [hep-th/9210036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.I.E. Tamm Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations