Skip to main content

Non-supersymmetric heterotic model building

A preprint version of the article is available at arXiv.

Abstract

We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)×SO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.

References

  1. [1]

    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson lines, Phys. Lett. B 187 (1987) 25 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    L.E. Ibáñez, J. Mas, H.-P. Nilles and F. Quevedo, Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys. B 301 (1988) 157 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept. 315 (1999) 285 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    K.-S. Choi and J.E. Kim Quarks and leptons from orbifolded superstring, Springer, Heidelberg Germany (2006).

    MATH  Google Scholar 

  15. [15]

    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    O. Lebedev, H.P. Nilles, S. Ramos-Sánchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    D.K. Mayorga Pena, H.P. Nilles and P.-K. Oehlmann, A Zip-code for Quarks, Leptons and Higgs Bosons, JHEP 12 (2012) 024 [arXiv:1209.6041] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z(12) orbifold, hep-th/0608085 [INSPIRE].

  21. [21]

    J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z(12 − I) orbifold compactification with and without exotics and effective R-parity, JHEP 06 (2007) 034 [hep-ph/0702278] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    S. Groot Nibbelink and O. Loukas, MSSM-like models on Z(8) toroidal orbifolds, JHEP 12 (2013) 044 [arXiv:1308.5145] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    H.P. Nilles and P.K.S. Vaudrevange, Geography of fields in extra dimensions: string theory lessons for particle physics, arXiv:1403.1597 [INSPIRE].

  24. [24]

    S. Groot Nibbelink, J. Held, F. Ruehle, M. Trapletti and P.K.S. Vaudrevange, Heterotic Z(6 − II) MSSM orbifolds in blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    M. Blaszczyk et al., A Z 2 × Z 2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    M. Blaszczyk, S. Groot Nibbelink, F. Ruehle, M. Trapletti and P.K.S. Vaudrevange, Heterotic MSSM on a resolved orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. [27]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  28. [28]

    K.R. Dienes, Modular invariance, finiteness and misaligned supersymmetry: new constraints on the numbers of physical string states, Nucl. Phys. B 429 (1994) 533 [hep-th/9402006] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    K.R. Dienes, Statistics on the heterotic landscape: gauge groups and cosmological constants of four-dimensional heterotic strings, Phys. Rev. D 73 (2006) 106010 [hep-th/0602286] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    G. Shiu and S.H.H. Tye, Bose-Fermi degeneracy and duality in nonsupersymmetric strings, Nucl. Phys. B 542 (1999) 45 [hep-th/9808095] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. [31]

    H. Kawai, D.C. Lewellen and S.H.H. Tye, Classification of closed fermionic string models, Phys. Rev. D 34 (1986) 3794 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. [32]

    J.D. Blum and K.R. Dienes, Duality without supersymmetry: the case of the SO(16) × SO(16) string, Phys. Lett. B 414 (1997) 260 [hep-th/9707148] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    A.E. Faraggi and M. Tsulaia, On the low energy spectra of the nonsupersymmetric heterotic string theories, Eur. Phys. J. C 54 (2008) 495 [arXiv:0706.1649] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. [34]

    W. Lerche, D. Lüst and A.N. Schellekens, Ten-dimensional heterotic strings from Niemeier lattices, Phys. Lett. B 181 (1986) 71 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    W. Lerche, D. Lüst and A.N. Schellekens, Chiral four-dimensional heterotic strings from selfdual lattices, Nucl. Phys. B 287 (1987) 477 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    A. Sagnotti, Some properties of open string theories, hep-th/9509080 [INSPIRE].

  38. [38]

    A. Sagnotti, Surprises in open string perturbation theory, Nucl. Phys. Proc. Suppl. 56B (1997) 332 [hep-th/9702093] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    C. Angelantonj, Nontachyonic open descendants of the 0B string theory, Phys. Lett. B 444 (1998) 309 [hep-th/9810214] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    S. Sugimoto, Anomaly cancellations in type-I d9 − d9 system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    R. Blumenhagen, A. Font and D. Lüst, Tachyon free orientifolds of type 0B strings in various dimensions, Nucl. Phys. B 558 (1999) 159 [hep-th/9904069] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    G. Aldazabal, L.E. Ibáñez and F. Quevedo, Standard-like models with broken supersymmetry from type-I string vacua, JHEP 01 (2000) 031 [hep-th/9909172] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    S. Moriyama, USp(32) string as spontaneously supersymmetry broken theory, Phys. Lett. B 522 (2001) 177 [hep-th/0107203] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    B. Gato-Rivera and A.N. Schellekens, Non-supersymmetric Tachyon-free Type-II and Type-I closed strings from RCFT, Phys. Lett. B 656 (2007) 127 [arXiv:0709.1426] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    B. Gato-Rivera and A.N. Schellekens, Non-supersymmetric orientifolds of Gepner models, Phys. Lett. B 671 (2009) 105 [arXiv:0810.2267] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    L.J. Dixon and J.A. Harvey, String theories in ten-dimensions without space-time supersymmetry, Nucl. Phys. B 274 (1986) 93 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    L. Álvarez-Gaumé, P.H. Ginsparg, G.W. Moore and C. Vafa, An O(16) × O(16) heterotic string, Phys. Lett. B 171 (1986) 155 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    K.S. Narain, M.H. Sarmadi and E. Witten, A note on toroidal compactification of heterotic string theory, Nucl. Phys. B 279 (1987) 369 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    K.S. Narain, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett. B 169 (1986) 41 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    V.P. Nair, A.D. Shapere, A. Strominger and F. Wilczek, Compactification of the twisted heterotic string, Nucl. Phys. B 287 (1987) 402 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    P.H. Ginsparg and C. Vafa, Toroidal compactification of nonsupersymmetric heterotic strings, Nucl. Phys. B 289 (1987) 414 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    D. Lüst, Compactification of the O(16) × O(16) heterotic string theory, Phys. Lett. B 178 (1986) 174 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    W. Fischler and L. Susskind, Dilaton tadpoles, string condensates and scale invariance, Phys. Lett. B 171 (1986) 383 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    W. Fischler and L. Susskind, Dilaton tadpoles, string condensates and scale invariance. 2., Phys. Lett. B 173 (1986) 262 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    T.R. Taylor, Model building on asymmetric Z(3) orbifolds: nonsupersymmetric models, Nucl. Phys. B 303 (1988) 543 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    A. Toon, Nonsupersymmetric Z(4) orbifolds and Atkin-Lehner symmetry, Phys. Lett. B 243 (1990) 68 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    T. Sasada, Asymmetric orbifold models of nonsupersymmetric heterotic strings, Prog. Theor. Phys. 95 (1996) 249 [hep-th/9508098] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    A. Font and A. Hernandez, Nonsupersymmetric orbifolds, Nucl. Phys. B 634 (2002) 51 [hep-th/0202057] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  59. [59]

    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. [60]

    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    L.E. Ibáñez, J. Mas, H.-P. Nilles and F. Quevedo, Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys. B 301 (1988) 157 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    A. Font, L.E. Ibáñez, H.P. Nilles and F. Quevedo, Degenerate orbifolds, Nucl. Phys. B 307 (1988) 109 [Erratum ibid. B 310 (1988) 764] [INSPIRE].

  64. [64]

    F. Plöger, S. Ramos-Sánchez, M. Ratz and P.K.S. Vaudrevange, Mirage torsion, JHEP 04 (2007) 063 [hep-th/0702176] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    J.A. Casas, E.K. Katehou and C. Muñoz, U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys. B 317 (1989) 171 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    M.B. Green, J.H. Schwarz and E. Witten Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987).

  67. [67]

    S. Groot Nibbelink, M. Trapletti and M. Walter, Resolutions of C n /Z n orbifolds, their U(1) bundles, and applications to string model building, JHEP 03 (2007) 035 [hep-th/0701227] [INSPIRE].

    Article  Google Scholar 

  68. [68]

    S. Groot Nibbelink, T.-W. Ha and M. Trapletti, Toric resolutions of heterotic orbifolds, Phys. Rev. D 77 (2008) 026002 [arXiv:0707.1597] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  69. [69]

    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. [71]

    L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    S. Groot Nibbelink, Blowups of heterotic orbifolds using toric geometry, arXiv:0708.1875 [INSPIRE].

  73. [73]

    S. Groot Nibbelink, D. Klevers, F. Ploger, M. Trapletti and P.K.S. Vaudrevange, Compact heterotic orbifolds in blow-up, JHEP 04 (2008) 060 [arXiv:0802.2809] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. [74]

    D. Lüst, S. Reffert, E. Scheidegger and S. Stieberger, Resolved toroidal orbifolds and their orientifolds, Adv. Theor. Math. Phys. 12 (2008) 67 [hep-th/0609014] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  75. [75]

    S. Reffert, The geometers toolkit to string compactifications, arXiv:0706.1310 [INSPIRE].

  76. [76]

    M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Gauged linear σ-models for toroidal orbifold resolutions, JHEP 05 (2012) 053 [arXiv:1111.5852] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. [77]

    S. Groot Nibbelink, H.P. Nilles and M. Trapletti, Multiple anomalous U(1)s in heterotic blow-ups, Phys. Lett. B 652 (2007) 124 [hep-th/0703211] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    H.P. Nilles, S. Ramos-Sánchez, P.K.S. Vaudrevange and A. Wingerter, The Orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun. 183 (2012) 1363 [arXiv:1110.5229] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. [79]

    M. Fischer, M. Ratz, J. Torrado and P.K.S. Vaudrevange, Classification of symmetric toroidal orbifolds, JHEP 01 (2013) 084 [arXiv:1209.3906] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  80. [80]

    S. Ramos-Sánchez, Towards Low Energy Physics from the Heterotic String, Fortsch. Phys. 10 (2009) 907 [arXiv:0812.3560] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  81. [81]

    E. Dudas and J. Mourad, Brane solutions in strings with broken supersymmetry and dilaton tadpoles, Phys. Lett. B 486 (2000) 172 [hep-th/0004165] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. [82]

    E. Dudas, J. Mourad and C. Timirgaziu, Time and space dependent backgrounds from nonsupersymmetric strings, Nucl. Phys. B 660 (2003) 3 [hep-th/0209176] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  83. [83]

    S. Kachru, J. Kumar and E. Silverstein, Vacuum energy cancellation in a nonsupersymmetric string, Phys. Rev. D 59 (1999) 106004 [hep-th/9807076] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  84. [84]

    G.W. Moore, Atkin-Lehner symmetry, Nucl. Phys. B 293 (1987) 139 [Erratum ibid. B 299 (1988) 847] [INSPIRE].

  85. [85]

    K.R. Dienes, Generalized Atkin-Lehner symmetry, Phys. Rev. D 42 (1990) 2004 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saúl Ramos-Sánchez.

Additional information

ArXiv ePrint: 1407.6362

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaszczyk, M., Nibbelink, S.G., Loukas, O. et al. Non-supersymmetric heterotic model building. J. High Energ. Phys. 2014, 119 (2014). https://doi.org/10.1007/JHEP10(2014)119

Download citation

Keywords

  • Strings and branes phenomenology