Advertisement

Journal of High Energy Physics

, 2014:109 | Cite as

Planck constant as spectral parameter in integrable systems and KZB equations

  • A. Levin
  • M. Olshanetsky
  • A. ZotovEmail author
Open Access
Article

Abstract

We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar (N = 1) the linear problem reproduces the Krichever’s ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

Keywords

Integrable Equations in Physics Quantum Groups Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Alexandrov, S. Leurent, Z. Tsuboi and A. Zabrodin, The master T-operator for the Gaudin model and the KP hierarchy, Nucl. Phys. B 883 (2014) 173 [arXiv:1306.1111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Zabrodin, The master T-operator for inhomogeneous XXX spin chain and mKP hierarchy, SIGMA 10 (2014) 006 [arXiv:1310.6988] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Aminov, S. Arthamonov, A. Smirnov and A. Zotov, Rational top and its classical r-matrix, J. Phys. A 47 (2014) 305207 [arXiv:1402.3189] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  4. [4]
    A. Antonov, K. Hasegawa and A. Zabrodin, On trigonometric intertwining vectors and nondynamical R matrix for the Ruijsenaars model, Nucl. Phys. B 503 (1997) 747 [hep-th/9704074] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.A. Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B 180 (1981) 189 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.A. Belavin and V.G. Drinfeld, Solutions of the classical Yang Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982) 159.MathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Boutroux, Recherches sur les transcendantes de M. Painlevé et létude asymptotique des équations différentielles du second ordre (in French), Ann. Sci. École Norm. Sup. 30 (1913) 255.
  9. [9]
    P. Boutroux, Recherches sur les transcendantes de M. Painlevé et létude asymptotique des équations différentielles du second ordre (in French), Ann. Sci. École Norm. Sup. 31 (1914) 99.
  10. [10]
    R. Garnier, Étude de lintégrale générale de léquation VI de M. Painlevé dans le voisinage de ses singularités transcendantes (in French), Ann. Sci. École Norm. Sup. 34 (1917) 239.Google Scholar
  11. [11]
    M. Gaudin, Diagonalisation dune classe dhamiltoniens de spin (in French), J. Phys. France 37 (1976) 1087.Google Scholar
  12. [12]
    F. Calogero, Exactly solvable one-dimensional many body problems, Lett. Nuovo Cim. 13 (1975) 411 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Calogero, On a functional equation connected with integrable many body problems, Lett. Nuovo Cim. 16 (1976) 77 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Moser, Three integrable Hamiltonian systems connnected with isospectral deformations, Adv. Math. 16 (1975) 197 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    M.A. Olshanetsky and A.M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71 (1981) 313 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I.V. Cherednik, On a method of constructing factorized S matrices in elementary functions, Theor. Math. Phys. 43 (1980) 356 [Teor. Mat. Fiz. 43 (1980) 117] [INSPIRE].
  17. [17]
    I. Cherednik, Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math. 106 (1994) 65.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Chernyakov, A.M. Levin, M. Olshanetsky and A. Zotov, Elliptic Schlesinger system and Painlevé VI, J. Phys. A 39 (2006) 12083 [nlin/0602043] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theories and integrability, JHEP 05 (2013) 126 [arXiv:1304.0779] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Bernard, On the Wess-Zumino-Witten models on the torus, Nucl. Phys. B 303 (1988) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nucl. Phys. B 309 (1988) 145 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    P.I. Etingof, Representations of affine Lie algebras, elliptic r matrix systems and special functions, Commun. Math. Phys. 159 (1994) 471 [hep-th/9303018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Kuroki and T. Takebe, Twisted Wess-Zumino-Witten models on elliptic curves, Commun. Math. Phys. 190 (1997) 1 [q-alg/9612033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Levin, M. Olshanetsky, A. Smirnov and A. Zotov, Hecke transformations of conformal blocks in WZW theory. I. KZB equations for non-trivial bundles, SIGMA 8 (2012) 095 [arXiv:1207.4386] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  26. [26]
    K. Hasegawa, Ruijsenaarscommuting difference operators as commuting transfer matrices, Commun. Math. Phys. 187 (1997) 289 [q-alg/9512029].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Gorsky, A. Zabrodin and A. Zotov, Spectrum of quantum transfer matrices via classical many-body systems, JHEP 01 (2014) 070 [arXiv:1310.6958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D.A. Korotkin and J.A.H. Samtleben, On the quantization of isomonodromic deformations on the torus, Int. J. Mod. Phys. A 12 (1997) 2013 [hep-th/9511087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Takasaki, Gaudin model, KZB equation and isomonodromic problem on torus, Lett. Math. Phys. 44 (1998) 143 [hep-th/9711058] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    I. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980) 282.CrossRefzbMATHGoogle Scholar
  31. [31]
    A. Levin and M. Olshanetsky, Calogero-Moser-Sutherland models, CRM Ser. Math. Phys. (2000), pg. 313.Google Scholar
  32. [32]
    A. Levin and M. Olshanetsky, Painlevé-Calogero correpondence, alg-geom/9706010.
  33. [33]
    A.M. Levin and M.A. Olshanetsky, Isomonodromic deformations and Hitchin systems, Transl. Amer. Math. Soc. 191 (1999) 223.MathSciNetzbMATHGoogle Scholar
  34. [34]
    A.M. Levin and M.A. Olshanetsky, Classical limit of the Knizhnik-Zamolodchikov-Bernard equations as hierarchy of isomondromic deformations: free fields approach, hep-th/9709207 [INSPIRE].
  35. [35]
    A. Levin, M.A. Olshanetsky and A. Zotov, Hitchin systems-symplectic Hecke correspondence and two-dimensional version, Commun. Math. Phys. 236 (2003) 93 [nlin/0110045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Levin, M. Olshanetsky and A. Zotov, Painlevé VI, rigid tops and reflection equation, Commun. Math. Phys. 268 (2006) 67 [math/0508058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Levin, M. Olshanetsky and A. Zotov, Classification of isomonodromy problems on elliptic curves, Russ. Math. Surv. 69 (2014) 35 [arXiv:1311.4498] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A.V. Smirnov and A.V. Zotov, Modifications of bundles, elliptic integrable systems, and related problems, Theor. Math. Phys. 177 (2013) 1281.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Levin, M. Olshanetsky and A. Zotov, Relativistic classical integrable tops and quantum R-matrices, JHEP 07 (2014) 012 [arXiv:1405.7523] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Levin, M. Olshanetsky and A. Zotov, Classical integrable systems and soliton equations related to eleven-vertex R-matrix, Nucl. Phys. B 887 (2014) 400 [arXiv:1406.2995] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Levin, M. Olshanetsky, A. Smirnov and A. Zotov, Characteristic classes of SL(N)-bundles and quantum dynamical elliptic R-matrices, J. Phys. A 46 (2013) 035201 [arXiv:1208.5750] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    A.V. Zotov and A.M. Levin, Integrable model of interacting elliptic tops, Theor. Math. Phys. 146 (2006) 45 [INSPIRE].CrossRefzbMATHGoogle Scholar
  43. [43]
    A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral duality in integrable systems from AGT conjecture, JETP Lett. 97 (2013) 45 [Pisma Zh. Eksp. Teor. Fiz. 97 (2013) 49] [arXiv:1204.0913] [INSPIRE].
  44. [44]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Matsuo, Integrable connections related to zonal spherical functions, Invent. Math. 110 (1992) 95.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    E. Mukhin, V. Tarasov and A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians, SIGMA 8 (2012) 72 [arXiv:1201.3990].MathSciNetzbMATHGoogle Scholar
  48. [48]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/gauge correspondence on curved spaces, arXiv:1405.6046 [INSPIRE].
  49. [49]
    N. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem, Lett. Math. Phys. 26 (1992) 167.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    L. Schlesinger, Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten (in German), J. Reine Angew. Math. 141 (1912) 96.Google Scholar
  51. [51]
    M. Jimbo, T.Miwa and K.Ueno, Monodromy preserving deformation of linear ordinary differential equations w ith rational coefficients: I. General theory and τ-function, Physica D 2 (1981) 306.Google Scholar
  52. [52]
    P.P. Kulish and E.K. Sklyanin, Quantum inverse scattering method and the Heisenberg ferromagnet, Phys. Lett. A 70 (1979) 461 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    L.D. Faddeev, E.K. Sklyanin and L.A. Takhtajan, The quantum inverse problem method. 1, Theor. Math. Phys. 40 (1980) 688 [Teor. Mat. Fiz. 40 (1979) 194] [INSPIRE].
  54. [54]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Les-Houches summer school proceedings 64, A. Connes, K. Gawedzki and J. Zinn-Justin eds., North Holland, The Netherlands (1998) [hep-th/9605187] [INSPIRE].
  55. [55]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  56. [56]
    M. Gaudin, La fonction donde de Bethe (in French), Masson, Paris France (1983), Russian transl., Mir, Moscow Russia (1987).Google Scholar
  57. [57]
    N.A. Slavnov, The algebraic Bethe ansatz and quantum integrable systems, Russ. Math. Surv. 62 (2007) 727.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A.V. Smirnov, Integrable SL(N, C) tops as Calogero-Moser systems, Theor. Math. Phys. 158 (2009) 300.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    A.V. Smirnov, Correspondence between Calogero-Moser systems and integrable SL(N, C) Euler-Arnold tops, arXiv:0809.2187.
  60. [60]
    A.V. Smirnov, Degenerate Sklyanin algebras, Centr. Europ. J. Phys. 8 (2010) 542 [arXiv:0903.1466].ADSGoogle Scholar
  61. [61]
    C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function interaction, Phys. Rev. Lett. 19 (1967) 1312 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    B. Suleimanov, “Quantizationsof the second Painlevé equation and the problem of the equivalence of its L-A pairs, Theor. Math. Phys. 156 (2008) 1280.MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    A. Zabrodin and A. Zotov, Quantum Painlevé-Calogero correspondence, J. Math. Phys. 53 (2012) 073507 [arXiv:1107.5672] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    A. Zabrodin and A. Zotov, Classical-quantum correspondence and functional relations for Painlevé equations, arXiv:1212.5813 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.NRU HSE, Department of MathematicsMoscowRussia
  2. 2.ITEPMoscowRussia
  3. 3.MIPTDolgoprudnyRussia
  4. 4.Steklov Mathematical Institute RASMoscowRussia

Personalised recommendations