Non-unitarity of the leptonic mixing matrix: present bounds and future sensitivities

Abstract

The non-unitarity of the effective leptonic mixing matrix at low energies is a generic signal of extensions of the Standard Model (SM) with extra fermionic singlet particles, i.e. “sterile” or “right-handed” neutrinos, to account for the observed neutrino masses. The low energy effects of such extensions can be described in a model-independent way by the Minimal Unitarity Violation (MUV) scheme, an effective field theory extension of the SM. We perform a global fit of the MUV scheme parameters to the present experimental data, which yields the up-to-date constraints on leptonic non-unitarity. Furthermore, we investigate the sensitivities and discovery prospects of future experiments. In particular, FCC-ee/TLEP would be a powerful probe of flavour-conserving non-unitarity for singlet masses up to ∼60 TeV. Regarding flavour-violating non-unitarity, future experiments on muon-to-electron conversion in nuclei could even probe extensions with singlet masses up to ∼0.3 PeV.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Langacker and D. London, Mixing Between Ordinary and Exotic Fermions, Phys. Rev. D 38 (1988) 886 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. [4]

    E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    S. Antusch, S. Blanchet, M. Blennow and E. Fernandez-Martinez, Non-unitary leptonic mixing and leptogenesis, JHEP 01 (2010) 017 [arXiv:0910.5957] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electro-weak fits with TeV-scale sterile neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    L. Basso, O. Fischer and J.J. van der Bij, Precision tests of unitarity in leptonic mixing, Europhys. Lett. 105 (2014) 11001 [arXiv:1310.2057] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    A. de Gouvêa, G.F. Giudice, A. Strumia and K. Tobe, Phenomenological implications of neutrinos in extra dimensions, Nucl. Phys. B 623 (2002) 395 [hep-ph/0107156] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A. Broncano, M.B. Gavela and E.E. Jenkins, The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis, Phys. Lett. B 552 (2003) 177 [Erratum ibid. B 636 (2006) 330] [hep-ph/0210271] [INSPIRE].

  11. [11]

    A. Broncano, M.B. Gavela and E.E. Jenkins, Neutrino physics in the seesaw model, Nucl. Phys. B 672 (2003) 163 [hep-ph/0307058] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  13. [13]

    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    W. Loinaz, N. Okamura, T. Takeuchi and L.C.R. Wijewardhana, The NuTeV anomaly, neutrino mixing and a heavy Higgs boson, Phys. Rev. D 67 (2003) 073012 [hep-ph/0210193] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchi and L.C.R. Wijewardhana, The NuTeV anomaly, lepton universality and nonuniversal neutrino gauge couplings, Phys. Rev. D 70 (2004) 113004 [hep-ph/0403306] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

    Google Scholar 

  17. [17]

    A. Ferroglia and A. Sirlin, Comparison of the Standard Theory Predictions of M W and sin2 θ lepteff with their Experimental Values, Phys. Rev. D 87 (2013) 037501 [arXiv:1211.1864] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    A. Abada, A.M. Teixeira, A. Vicente and C. Weiland, Sterile neutrinos in leptonic and semileptonic decays, JHEP 02 (2014) 091 [arXiv:1311.2830] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  20. [20]

    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  21. [21]

    R. Alonso, M. Dhen, M.B. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].

    Article  Google Scholar 

  23. [23]

    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Antonelli et al., An Evaluation of |V us | and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Aoki et al., Review of lattice results concerning low energy particle physics, arXiv:1310.8555 [INSPIRE].

  26. [26]

    HPQCD Collaboration, UKQCD collaboration, E. Follana, C.T.H. Davies, G.P. Lepage and J. Shigemitsu, High Precision determination of the pi, K, D and D(s) decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    NuTeV collaboration, G.P. Zeller et al., A Precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].

  28. [28]

    W. Bentz, I.C. Cloet, J.T. Londergan and A.W. Thomas, Reassessment of the NuTeV determination of the weak mixing angle, Phys. Lett. B 693 (2010) 462 [arXiv:0908.3198] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. Erler and M.J. Ramsey-Musolf, Low energy tests of the weak interaction, Prog. Part. Nucl. Phys. 54 (2005) 351 [hep-ph/0404291] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    K.S. Kumar, S. Mantry, W.J. Marciano and P.A. Souder, Low Energy Measurements of the Weak Mixing Angle, Ann. Rev. Nucl. Part. Sci. 63 (2013) 237 [arXiv:1302.6263] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    Nuruzzaman, Q-weak: First Direct Measurement of the Weak Charge of the Proton, arXiv:1312.6009 [INSPIRE].

  32. [32]

    J. Erler and S. Su, The Weak Neutral Current, Prog. Part. Nucl. Phys. 71 (2013) 119 [arXiv:1303.5522] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    V.A. Dzuba, J.C. Berengut, V.V. Flambaum and B. Roberts, Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109 (2012) 203003 [arXiv:1207.5864] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    PVDIS collaboration, D. Wang et al., Measurement of parity violation in electron-quark scattering, Nature 506 (2014) 67 [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    SLAC E158 collaboration, P.L. Anthony et al., Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett. 95 (2005) 081601 [hep-ex/0504049] [INSPIRE].

    Article  Google Scholar 

  36. [36]

    K.S. Kumar, The E158 experiment, Eur. Phys. J. A 32 (2007) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

    Google Scholar 

  38. [38]

    M. Baak et al., Working Group Report: Precision Study of Electroweak Interactions, arXiv:1310.6708 [INSPIRE].

  39. [39]

    M.E. Biagini et al., Tau/Charm Factory Accelerator Report, arXiv:1310.6944 [INSPIRE].

  40. [40]

    A. Aguilar-Arevalo et al., High Purity Pion Beam at TRIUMF, Nucl. Instrum. Meth. A 609 (2009) 102 [arXiv:1001.3121] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    D. Pocanic et al., Precise measurement of the π +π 0 e + ν branching ratio, Phys. Rev. Lett. 93 (2004) 181803 [hep-ex/0312030] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    NA62 collaboration, E. Goudzovski, Lepton flavour universality test at the CERN NA62 experiment, Nucl. Phys. Proc. Suppl. 210-211 (2011) 163 [arXiv:1008.1219] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    J. Erler, C.J. Horowitz, S. Mantry and P.A. Souder, Weak Polarized Electron Scattering, arXiv:1401.6199 [INSPIRE].

  44. [44]

    K. Kumar, Z.-T. Lu and M.J. Ramsey-Musolf, Working Group Report: Nucleons, Nuclei and Atoms, arXiv:1312.5416 [INSPIRE].

  45. [45]

    MOLLER collaboration, J. Mammei, The MOLLER Experiment, Nuovo Cim. C 035N04 (2012) 203 [arXiv:1208.1260] [INSPIRE].

    Google Scholar 

  46. [46]

    SuperKEKB Physics Working Group collaboration, A.G. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [INSPIRE].

  47. [47]

    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].

  48. [48]

    T. Ogitsu et al., A New Continuous Muon Beam Line Using a Highly Efficient Pion Capture System at RCNP, Conf. Proc. C 110328 (2011) 856 [INSPIRE].

    Google Scholar 

  49. [49]

    A. Yamamoto et al., MuSIC, the Worlds Highest Intensity DC Muon Beam using a Pion Capture System, Conf. Proc. C 110904 (2011) 820 [INSPIRE].

    Google Scholar 

  50. [50]

    Mu2e collaboration, R.J. Abrams et al., Mu2e Conceptual Design Report, arXiv:1211.7019 [INSPIRE].

  51. [51]

    COMET collaboration, Y. Kuno, A search for muon-to-electron conversion at J-PARC: The COMET experiment, PTEP 2013 (2013) 022C01.

    Google Scholar 

  52. [52]

    R.J. Barlow, The PRISM/PRIME project, Nucl. Phys. Proc. Suppl. 218 (2011) 44 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    mu2e collaboration, K. Knoepfel et al., Feasibility Study for a Next-Generation Mu2e Experiment, arXiv:1307.1168 [INSPIRE].

  54. [54]

    D. Becker, K. Gerz, S. Baunack, K. Kumar and F.E. Maas, P2The weak charge of the proton, PoS(Bormio 2013)024 [INSPIRE].

  55. [55]

    ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    A. Luisiani et al., HFAG-Tau Report (2012), http://www.slac.stanford.edu/xorg/hfag/tau/winter-2012/index.html.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oliver Fischer.

Additional information

ArXiv ePrint: 1407.6607

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antusch, S., Fischer, O. Non-unitarity of the leptonic mixing matrix: present bounds and future sensitivities. J. High Energ. Phys. 2014, 94 (2014). https://doi.org/10.1007/JHEP10(2014)094

Download citation

Keywords

  • Rare Decays
  • LEP HERA and SLC Physics
  • Beyond Standard Model
  • Neutrino Physics