Flavored dark matter beyond Minimal Flavor Violation

  • Prateek AgrawalEmail author
  • Monika Blanke
  • Katrin Gemmler
Open Access


We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator ϕ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. The combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.


Beyond Standard Model Cosmology of Theories beyond the SM B-Physics Kaon Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Kile and A. Soni, Flavored Dark Matter in Direct Detection Experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.F. Kamenik and J. Zupan, Discovering Dark Matter Through Flavor Violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE].ADSGoogle Scholar
  3. [3]
    B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  5. [5]
    B. Batell, T. Lin and L.-T. Wang, Flavored Dark Matter and R-Parity Violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Kile, Flavored Dark Matter: A Review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Y. Zhang, Top Quark Mediated Dark Matter, Phys. Lett. B 720 (2013) 137 [arXiv:1212.2730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Hirsch, S. Morisi, E. Peinado and J.W.F. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.S. Boucenna et al., Phenomenology of Dark Matter from A 4 Flavor Symmetry, JHEP 05 (2011) 037 [arXiv:1101.2874] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    L.E. Ibáñez, The Scalar Neutrinos as the Lightest Supersymmetric Particles and Cosmology, Phys. Lett. B 137 (1984) 160 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.S. Hagelin, G.L. Kane and S. Raby, Perhaps Scalar Neutrinos Are the Lightest Supersymmetric Partners, Nucl. Phys. B 241 (1984) 638 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Freese, Can Scalar Neutrinos Or Massive Dirac Neutrinos Be the Missing Mass?, Phys. Lett. B 167 (1986) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. March-Russell, C. McCabe and M. McCullough, Neutrino-Flavoured Sneutrino Dark Matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Daylan et al., The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter, arXiv:1402.6703 [INSPIRE].
  20. [20]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored Dark Matter and the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Izaguirre, G. Krnjaic and B. Shuve, The Galactic Center Excess from the Bottom Up, Phys. Rev. D 90 (2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky and C.J. Wallace, Extended gamma-ray emission from Coy Dark Matter, JCAP 05 (2014) 009 [arXiv:1401.6458] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Kong and J.-C. Park, Bounds on Dark Matter Interpretation of Fermi-LAT GeV Excess, arXiv:1404.3741 [INSPIRE].
  26. [26]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the Galactic Centre excess, Phys. Rev. D 90 (2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Abdullah et al., Hidden On-Shell Mediators for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D.K. Ghosh, S. Mondal and I. Saha, Confronting the Galactic Center Gamma Ray Excess With a Light Scalar Dark Matter, arXiv:1405.0206 [INSPIRE].
  30. [30]
    A. Martin, J. Shelton and J. Unwin, Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations, arXiv:1405.0272 [INSPIRE].
  31. [31]
    A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 015032 [arXiv:1405.5204] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Basak and T. Mondal, Class of Higgs-portal Dark Matter models in the light of gamma-ray excess from Galactic center, arXiv:1405.4877 [INSPIRE].
  33. [33]
    K.P. Modak, D. Majumdar and S. Rakshit, A Possible Explanation of Low Energy γ-ray Excess from Galactic Centre and Fermi Bubble by a Dark Matter Model with Two Real Scalars, arXiv:1312.7488 [INSPIRE].
  34. [34]
    R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  39. [39]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-Violating Dark Matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.L. Feng, J. Kumar and D. Sanford, Xenophobic Dark Matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Blanke et al., Another look at the flavour structure of the littlest Higgs model with T-parity, Phys. Lett. B 646 (2007) 253 [hep-ph/0609284] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Blanke, A.J. Buras, K. Gemmler and T. Heidsieck, ΔF = 2 observables and BX q γ decays in the Left-Right Model: Higgs particles striking back, JHEP 03 (2012) 024 [arXiv:1111.5014] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The Anatomy of Quark Flavour Observables in 331 Models in the Flavour Precision Era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Virto, Exact NLO strong interaction corrections to the ΔF = 2 effective Hamiltonian in the MSSM, JHEP 11 (2009) 055 [arXiv:0907.5376] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P.L. Cho, M. Misiak and D. Wyler, K Lπ 0 e + e and BX s l + l decay in the MSSM, Phys. Rev. D 54 (1996) 3329 [hep-ph/9601360] [INSPIRE].ADSGoogle Scholar
  49. [49]
    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03 (2012) 090 [arXiv:1111.6402] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  52. [52]
    UTfit collaboration, M. Bona et al., The UTfit collaboration report on the status of the unitarity triangle beyond the standard model. I. Model-independent analysis and minimal flavor violation, JHEP 03 (2006) 080 [hep-ph/0509219] [INSPIRE]. Updates available on
  53. [53]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].Google Scholar
  54. [54]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Hubisz, S.J. Lee and G. Paz, The Flavor of a little Higgs with T-parity, JHEP 06 (2006) 041 [hep-ph/0512169] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Blanke et al., Particle antiparticle mixing, ε K , ΔΓq , A SLq , A CP(B dψK S), A CP(B sψϕ) and BX s,dγ in the Littlest Higgs model with T-parity, JHEP 12 (2006) 003 [hep-ph/0605214] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC Processes in the Littlest Higgs Model with T-Parity: a 2009 Look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].Google Scholar
  58. [58]
    C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Steigman, B. Dasgupta and J.F. Beacom, Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].ADSGoogle Scholar
  66. [66]
    CMS collaboration, Search for direct production of bottom squark pairs, CMS-PAS-SUS-13-018 (2014).
  67. [67]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].
  69. [69]
    M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured Naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Agrawal and C. Frugiuele, Mixing stops at the LHC, JHEP 01 (2014) 115 [arXiv:1304.3068] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-048 (2013).
  72. [72]
    CMS collaboration, Search for top squarks decaying to a charm quark and a neutralino in events with a jet and missing transverse momentum, CMS-PAS-SUS-13-009 (2014).
  73. [73]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar
  74. [74]
    CMS collaboration, Search for supersymmetry with razor variables in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1405.3961 [INSPIRE].
  75. [75]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Prateek Agrawal
    • 1
    Email author
  • Monika Blanke
    • 2
  • Katrin Gemmler
    • 1
  1. 1.FermilabBataviaUnited Kingdom
  2. 2.Theory Division, CERNGeneva 23Switzerland

Personalised recommendations