The complete AdS3 ×S3 × T4 worldsheet S matrix

  • Riccardo Borsato
  • Olof Ohlsson Sax
  • Alessandro Sfondrini
  • Bogdan StefanskiJr
Open Access
Article

Abstract

We derive the non-perturbative worldsheet S matrix for fundamental excitations of Type IIB superstring theory on AdS3 ×S3 × T4 with Ramond-Ramond flux. To this end, we study the off-shell symmetry algebra of the theory and its representations. We use these to determine the S matrix up to scalar factors and we derive the crossing equations that these scalar factors satisfy. Our treatment automatically includes fundamental massless excitations, removing a long-standing obstacle in using integrability to study the AdS3/CFT2 correspondence. The present paper contains a detailed derivation of results first announced in arXiv:1403.4543.

Keywords

AdS-CFT Correspondence Exact S-Matrix Integrable Field Theories 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMATHGoogle Scholar
  4. [4]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Arutyunov and S. Frolov, Foundations of the AdS5 ×S5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].ADSMATHGoogle Scholar
  6. [6]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  7. [7]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} \) =6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    T. Klose, Review of AdS/CFT integrability, chapter IV.3: \( \mathcal{N} \) =6 Chern-Simons and strings on AdS4 ×CP3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  9. [9]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  11. [11]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 +1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetMATHGoogle Scholar
  17. [17]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS3, JHEP 12 (1998) 026 [hep-th/9812046] [INSPIRE].MATHGoogle Scholar
  18. [18]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS3 ×S3 ×S3 ×S1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].ADSMATHGoogle Scholar
  19. [19]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  20. [20]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, ) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  21. [21]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3 and the SL(2, ) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2, ) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].ADSGoogle Scholar
  23. [23]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  24. [24]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS3/CFT2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].ADSMATHGoogle Scholar
  25. [25]
    P. Sundin and L. Wulff, The low energy limit of the AdS3 ×S3 ×M 4 spinning string, JHEP 10 (2013) 111 [arXiv:1306.6918] [INSPIRE].ADSMATHGoogle Scholar
  26. [26]
    A. Cagnazzo and K. Zarembo, B-field in AdS3/CFT2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  27. [27]
    K. Zarembo, Strings on semisymmetric superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  28. [28]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS3 ×S3 ×S3 ×S1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Pakman, L. Rastelli and S.S. Razamat, A spin chain for the symmetric product CFT2, JHEP 05 (2010) 099 [arXiv:0912.0959] [INSPIRE].ADSMATHGoogle Scholar
  30. [30]
    O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS3/CFT2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].MATHGoogle Scholar
  31. [31]
    O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS3/CFT2 integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].ADSMATHGoogle Scholar
  32. [32]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic su(1|1)2 S-matrix for AdS3/CFT2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].ADSMATHGoogle Scholar
  33. [33]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS3/CFT2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].ADSMATHGoogle Scholar
  34. [34]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, The all-loop integrable spin-chain for strings on AdS3 ×S3 ×T4 : the massive sector, JHEP 08 (2013) 043 [arXiv:1303.5995] [INSPIRE].ADSMATHGoogle Scholar
  35. [35]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski Jr. and A. Torrielli, Dressing phases of AdS3/CFT2, Phys. Rev. D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].ADSGoogle Scholar
  36. [36]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS3 ×S3 ×S3 ×S1 superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A.A. Tseytlin, Quantum corrections to spinning superstrings in AdS3 ×S3 ×M 4 : determining the dressing phase, JHEP 04 (2013) 006 [arXiv:1211.6090] [INSPIRE].ADSMATHGoogle Scholar
  38. [38]
    M. Beccaria and G. Macorini, Quantum corrections to short folded superstring in AdS3 ×S3 ×M 4, JHEP 03 (2013) 040 [arXiv:1212.5672] [INSPIRE].ADSMATHGoogle Scholar
  39. [39]
    M.C. Abbott, Comment on strings in AdS3 ×S3 ×S3 ×S1 at one loop, JHEP 02 (2013) 102 [arXiv:1211.5587] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Sundin and L. Wulff, Worldsheet scattering in AdS3/CFT2, JHEP 07 (2013) 007 [arXiv:1302.5349] [INSPIRE].ADSMATHGoogle Scholar
  41. [41]
    M.C. Abbott, The AdS3 ×S3 ×S3 ×S1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401 [arXiv:1306.5106] [INSPIRE].ADSMATHGoogle Scholar
  42. [42]
    B. Hoare and A.A. Tseytlin, On string theory on AdS3 ×S3 ×T4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSMATHGoogle Scholar
  43. [43]
    B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS3 ×S3 ×T4 superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].ADSMATHGoogle Scholar
  44. [44]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS3 ×S3 ×T4 with mixed flux, Nucl. Phys. B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSMATHGoogle Scholar
  45. [45]
    O.T. Engelund, R.W. McKeown and R. Roiban, Generalized unitarity and the worldsheet S matrix in AdSn ×Sn ×M 10−2n, JHEP 08 (2013) 023 [arXiv:1304.4281] [INSPIRE].ADSMATHGoogle Scholar
  46. [46]
    P. Sundin, Worldsheet two- and four-point functions at one loop in AdS3/CFT2, Phys. Lett. B 733 (2014) 134 [arXiv:1403.1449] [INSPIRE].ADSMATHGoogle Scholar
  47. [47]
    A. Babichenko, A. Dekel and O. Ohlsson Sax, Finite-gap equations for strings on AdS3 ×S3 ×T4 with mixed 3-form flux, arXiv:1405.6087 [INSPIRE].
  48. [48]
    L. Bianchi and B. Hoare, AdS3 ×S3 ×M 4 string S-matrices from unitarity cuts, JHEP 08 (2014) 097 [arXiv:1405.7947] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Sfondrini, Towards integrability for AdS3/CFT2, arXiv:1406.2971 [INSPIRE].
  50. [50]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Massless factorized scattering and σ-models with topological terms, Nucl. Phys. B 379 (1992) 602 [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    P. Fendley, H. Saleur and A.B. Zamolodchikov, Massless flows. 1. The sine-Gordon and O(n) models, Int. J. Mod. Phys. A 8 (1993) 5717 [hep-th/9304050] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  52. [52]
    P. Fendley, H. Saleur and A.B. Zamolodchikov, Massless flows, 2. The exact S matrix approach, Int. J. Mod. Phys. A 8 (1993) 5751 [hep-th/9304051] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  53. [53]
    J.R. David and A. Sadhukhan, Spinning strings and minimal surfaces in AdS3 with mixed 3-form fluxes, arXiv:1405.2687 [INSPIRE].
  54. [54]
    C. Ahn and P. Bozhilov, String solutions in AdS3 ×S3 ×T4 with NS-NS B-field, arXiv:1404.7644 [INSPIRE].
  55. [55]
    A. Banerjee, K.L. Panigrahi and P.M. Pradhan, Spiky strings on AdS3 ×S3 with NS-NS flux, arXiv:1405.5497 [INSPIRE].
  56. [56]
    J.R. David and B. Sahoo, S-matrix for magnons in the D1-D5 system, JHEP 10 (2010) 112 [arXiv:1005.0501] [INSPIRE].ADSMATHGoogle Scholar
  57. [57]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    T. Lloyd and J. Stefanski, Bogdan, AdS3/CFT2 , finite-gap equations and massless modes, JHEP 04 (2014) 179 [arXiv:1312.3268] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, All-loop worldsheet S matrix for AdS3 ×S3 ×T4, Phys. Rev. Lett. 113 (2014) 131601 [arXiv:1403.4543] [INSPIRE].ADSMATHGoogle Scholar
  60. [60]
    S. Frolov, J. Plefka and M. Zamaklar, The AdS5 ×S5 superstring in light-cone gauge and its Bethe equations, J. Phys. A 39 (2006) 13037 [hep-th/0603008] [INSPIRE].MATHGoogle Scholar
  61. [61]
    G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, The off-shell symmetry algebra of the light-cone AdS5 ×S5 superstring, J. Phys. A 40 (2007) 3583 [hep-th/0609157] [INSPIRE].ADSMATHGoogle Scholar
  62. [62]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS5 ×S5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Rahmfeld and A. Rajaraman, The GS string action on AdS3 ×S3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Park and S.-J. Rey, Green-Schwarz superstring on AdS3 ×S3, JHEP 01 (1999) 001 [hep-th/9812062] [INSPIRE].ADSGoogle Scholar
  65. [65]
    R.R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS3 ×S3 Ramond-Ramond background in light cone gauge, J. Math. Phys. 42 (2001) 2987 [hep-th/0011191] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  66. [66]
    M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, \( \mathcal{N} \) = 2 superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    L. Wulff, Superisometries and integrability of superstrings, arXiv:1402.3122 [INSPIRE].
  68. [68]
    L. Wulff, The type-II superstring to order θ 4, JHEP 07 (2013) 123 [arXiv:1304.6422] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  69. [69]
    M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  70. [70]
    H. Lü, C.N. Pope and P.K. Townsend, Domain walls from anti-de Sitter space-time, Phys. Lett. B 391 (1997) 39 [hep-th/9607164] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  71. [71]
    H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on Sn, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  72. [72]
    L.F. Alday, G. Arutyunov and S. Frolov, Green-Schwarz strings in TsT-transformed backgrounds, JHEP 06 (2006) 018 [hep-th/0512253] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    R.R. Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B 625 (2002) 70 [hep-th/0112044] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  74. [74]
    G. Arutyunov and S. Frolov, Uniform light-cone gauge for strings in AdS5 ×S5 : solving su(1|1) sector, JHEP 01 (2006) 055 [hep-th/0510208] [INSPIRE].ADSGoogle Scholar
  75. [75]
    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  76. [76]
    S.J. van Tongeren, Integrability of the AdS5 ×S5 superstring and its deformations, arXiv:1310.4854 [INSPIRE].
  77. [77]
    E. Gava and K.S. Narain, Proving the PP wave/CFT2 duality, JHEP 12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSGoogle Scholar
  78. [78]
    J. Gomis, L. Motl and A. Strominger, PP wave/CFT2 duality, JHEP 11 (2002) 016 [hep-th/0206166] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M.B. Green and J.H. Schwarz, Extended supergravity in ten-dimensions, Phys. Lett. B 122 (1983) 143 [INSPIRE].ADSGoogle Scholar
  80. [80]
    M.B. Green and J.H. Schwarz, Superstring interactions, Nucl. Phys. B 218 (1983) 43 [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [INSPIRE].ADSGoogle Scholar
  82. [82]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} \) = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSMathSciNetGoogle Scholar
  83. [83]
    D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [INSPIRE].MathSciNetMATHGoogle Scholar
  84. [84]
    J. Plefka, F. Spill and A. Torrielli, On the Hopf algebra structure of the AdS/CFT S-matrix, Phys. Rev. D 74 (2006) 066008 [hep-th/0608038] [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    A. Torrielli, The Hopf superalgebra of AdS/CFT, J. Geom. Phys. 61 (2011) 230 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  86. [86]
    A. Torrielli, Yangians, S-matrices and AdS/CFT, J. Phys. A 44 (2011) 263001 [arXiv:1104.2474] [INSPIRE].ADSMATHGoogle Scholar
  87. [87]
    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].ADSGoogle Scholar
  88. [88]
    P. Fendley and H. Saleur, Massless integrable quantum field theories and massless scattering in (1 +1)-dimensions, hep-th/9310058 [INSPIRE].
  89. [89]
    R.A. Janik, The AdS5 ×S5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].ADSGoogle Scholar
  90. [90]
    G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  91. [91]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].ADSMathSciNetGoogle Scholar
  92. [92]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].ADSMathSciNetGoogle Scholar
  93. [93]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on AdS5 ×S5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [INSPIRE].ADSMATHGoogle Scholar
  94. [94]
    M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602 [hep-th/0311203] [INSPIRE].ADSMathSciNetGoogle Scholar
  95. [95]
    M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of AdS5 ×S5 string theory and low-energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3 [hep-th/0403120] [INSPIRE].ADSMATHGoogle Scholar
  96. [96]
    R. Hernandez and E. Lopez, The SU(3) spin chain σ-model and string theory, JHEP 04 (2004) 052 [hep-th/0403139] [INSPIRE].ADSMathSciNetGoogle Scholar
  97. [97]
    B. Stefanski Jr. and A.A. Tseytlin, Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations, JHEP 05 (2004) 042 [hep-th/0404133] [INSPIRE].ADSMathSciNetGoogle Scholar
  98. [98]
    B. Stefanski Jr. and A.A. Tseytlin, Super spin chain coherent state actions and AdS5 ×S5 superstring, Nucl. Phys. B 718 (2005) 83 [hep-th/0503185] [INSPIRE].ADSMATHGoogle Scholar
  99. [99]
    B. Stefanski Jr., Landau-Lifshitz σ-models, fermions and the AdS/CFT correspondence, JHEP 07 (2007) 009 [arXiv:0704.1460] [INSPIRE].ADSMathSciNetGoogle Scholar
  100. [100]
    J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  101. [101]
    G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  102. [102]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS5 ×S5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].ADSGoogle Scholar
  103. [103]
    N. Gromov, V. Kazakov and P. Vieira, Integrability for the full spectrum of planar AdS/CFT, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].ADSMathSciNetGoogle Scholar
  104. [104]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  105. [105]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS5 ×S5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].ADSGoogle Scholar
  106. [106]
    A. Cavaglià, D. Fioravanti and R. Tateo, Extended Y-system for the AdS5/CFT4 correspondence, Nucl. Phys. B 843 (2011) 302 [arXiv:1005.3016] [INSPIRE].ADSMATHGoogle Scholar
  107. [107]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS5/CFT4, arXiv:1405.4857 [INSPIRE].
  108. [108]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 ×S3 ×S3 ×S1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].MathSciNetMATHGoogle Scholar
  109. [109]
    D. Tong, The holographic dual of AdS3 ×S3 ×S3 ×S1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].ADSGoogle Scholar
  110. [110]
    M.R. Gaberdiel and R. Gopakumar, Large \( \mathcal{N} \) = 4 holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].ADSGoogle Scholar
  111. [111]
    J.R. David and A. Sadhukhan, Classical integrability in the BTZ black hole, JHEP 08 (2011) 079 [arXiv:1105.0480] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  112. [112]
    J.R. David, C. Kalousios and A. Sadhukhan, Generating string solutions in BTZ, JHEP 02 (2013) 013 [arXiv:1211.5382] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Riccardo Borsato
    • 1
  • Olof Ohlsson Sax
    • 2
  • Alessandro Sfondrini
    • 3
  • Bogdan StefanskiJr
    • 4
  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtNetherlands
  2. 2.The Blackett LaboratoryImperial CollegeLondonUK
  3. 3.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu Berlin, IRIS GebäudeBerlinGermany
  4. 4.Centre for Mathematical ScienceCity University LondonLondonUK

Personalised recommendations