Dark matter monopoles, vectors and photons

  • Valentin V. Khoze
  • Gunnar Ro
Open Access


In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of ’t Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons γ as well as charged massive vector bosons W ± . The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to dark photons, we compute their contribution to the measured density of relativistic particles N eff and also apply observational constraints from the Bullet cluster and other large scale galaxies on long-range interactions of monopoles and of dark vector bosons. At scales relevant for dwarf galaxies we identify regions on the parameter space where self-interacting monopole and vector dark mater components can aid solving the core-vs-cusp and the too-big-to-fail problems.


Beyond Standard Model Cosmology of Theories beyond the SM Solitons Monopoles and Instantons 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Particle Spectrum in the Quantum Field Theory, in 30 Years of the Landau InstituteSelected Papers, World Scientific Publishing Co. (1996), pg. 540 [ISBN: 978-981-02-2253-6, 978-981-4500-46-3] [JETP Lett. 20 (1974) 194] [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].
  3. [3]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Murayama and J. Shu, Topological Dark Matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, arXiv:1311.1035 [INSPIRE].
  8. [8]
    V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  11. [11]
    E.B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].
  12. [12]
    J. Preskill, Magnetic Monopoles, Ann. Rev. Nucl. Part. Sci. 34 (1984) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  14. [14]
    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSzbMATHGoogle Scholar
  15. [15]
    W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].
  18. [18]
    M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].
  19. [19]
    W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 [INSPIRE].
  20. [20]
    R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  23. [23]
    R. Foot, A.B. Kobakhidze, K.L. McDonald and R.R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Foot, A.B. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Holthausen, M. Lindner and M.A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal BL extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    V.V. Khoze and G. Ro, Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Guo and Z. Kang, Higgs Naturalness and Dark Matter Stability by Scale Invariance, arXiv:1401.5609 [INSPIRE].
  37. [37]
    M. Hashimoto, S. Iso and Y. Orikasa, Radiative Symmetry Breaking from Flat Potential in various U(1) models, Phys. Rev. D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, arXiv:1404.6268 [INSPIRE].
  40. [40]
    C. Tamarit, Higgs vacua behind barriers, arXiv:1404.7673 [INSPIRE].
  41. [41]
    J. Kubo, K.S. Lim and M. Lindner, Gamma-ray Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of the Standard Model, JHEP 09 (2014) 016 [arXiv:1405.1052] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Kannike, A. Racioppi and M. Raidal, Embedding inflation into the Standard ModelMore evidence for classical scale invariance, JHEP 06 (2014) 154 [arXiv:1405.3987] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Lindner, S. Schmidt and J. Smirnov, Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, arXiv:1405.6204 [INSPIRE].
  44. [44]
    C.G. Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].ADSGoogle Scholar
  45. [45]
    W. Fischler and W. Tangarife Garcia, Hierarchies of SUSY Splittings and Invisible Photinos as Dark Matter, JHEP 01 (2011) 025 [arXiv:1011.0099] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    J. Evslin and S.B. Gudnason, Dwarf Galaxy Sized Monopoles as Dark Matter?, arXiv:1202.0560 [INSPIRE].
  47. [47]
    J.L. Feng, H. Tu and H.-B. Yu, Thermal Relics in Hidden Sectors, JCAP 10 (2008) 043 [arXiv:0808.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, accepted in Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
  49. [49]
    C. Brust, D.E. Kaplan and M.T. Walters, New Light Species and the CMB, JHEP 12 (2013) 058 [arXiv:1303.5379] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.CrossRefzbMATHGoogle Scholar
  51. [51]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].
  52. [52]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark Matter and Dark Radiation, Phys. Rev. D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].ADSGoogle Scholar
  56. [56]
    E.W. Kolb and M.S. Turner, The Early Universe, Frontiers in Physics (Book 69), Westview Press (1994) [ISBN: 0201626748, 9780201626742] [Nature 294 (1981) 521] [Phys. Today 44 (1991) 106] [INSPIRE].
  57. [57]
    A.H. Guth and E.J. Weinberg, Could the Universe Have Recovered from a Slow First Order Phase Transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    V.M. Ruutu, V.B. Eltsov, M. Krusius, Y. Makhlin, B. Placais and G.E. Volovik, Defect Formation in Quench-Cooled Superfluid Phase Transition, Phys. Rev. Lett. 80 (1998) 1465 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M.J. Bowick, L. Chandar, E.A. Schiff and A.M. Srivastava, The Cosmological Kibble mechanism in the laboratory: String formation in liquid crystals, Science 263 (1994) 943 [hep-ph/9208233] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y.B. Zeldovich and M.Y. Khlopov, On the Concentration of Relic Magnetic Monopoles in the Universe, Phys. Lett. B 79 (1978) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Deffects, Cambridge University Press (1994).Google Scholar
  63. [63]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M.R. Buckley and P.J. Fox, Dark Matter Self-Interactions and Light Force Carriers, Phys. Rev. D 81 (2010) 083522 [arXiv:0911.3898] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett. 106 (2011) 171302 [arXiv:1011.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in Self-Interacting Galactic Dark Matter Haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Zavala, M. Vogelsberger and M.G. Walker, Constraining Self-Interacting Dark Matter with the Milky Ways dwarf spheroidals, Mon. Not. Roy. Astron. Soc. 431 (2013) L20 [arXiv:1211.6426] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M.R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurdson and M. Vogelsberger, Scattering, Damping and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers, Phys. Rev. D 90 (2014) 043524 [arXiv:1405.2075] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Dark Atoms: Asymmetry and Direct Detection, JCAP 10 (2011) 011 [arXiv:1105.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S.A. Khrapak, A.V. Ivlev, G.E. Morfill and S.K. Zhdanov, Scattering in the attractive Yukawa potential in the limit of strong interaction, Phys. Rev. Lett. 90 (2003) 225002.ADSCrossRefGoogle Scholar
  76. [76]
    S.A. Khrapak, A.V. Ivlev and G.E. Morfill, Momentum transfer in complex plasmas, Phys. Rev. E 70 (2004) 056405.ADSGoogle Scholar
  77. [77]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.IPPP, Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations