Skip to main content

Particle-vortex and Maxwell duality in the AdS4 × 3/ABJM correspondence

A preprint version of the article is available at arXiv.

Abstract

We revisit the notion of particle-vortex duality in abelian theories of complex scalar fields coupled to gauge fields, formulating the duality as a transformation at the level of the path integral. This transformation is then made symmetric and cast as a self-duality that maps the original theory into itself with the role of particles and vortices interchanged. After defining the transformation for a pure Chern-Simons gauge theory, we show how to embed it into (a sector of) the (2 + 1)-dimensional ABJM model, and argue that this duality can be understood as being related to 4-dimensional Maxwell duality in the AdS4 × 3 bulk.

References

  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    A. Zee, Quantum Field Theory in a nutshell, second edition, Princeton University Press, (2010).

  5. [5]

    D.H. Lee and M.P.A. Fisher, Anyon superconductivity and charge vortex duality, Int. J. Mod. Phys. B 5 (1991) 2675 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    C.P. Burgess and B.P. Dolan, Particle vortex duality and the modular group: applications to the quantum Hall effect and other 2D systems, Phys. Rev. B 63 (2001) 155309 [hep-th/0010246] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    S. Sachdev and X. Yin, Quantum phase transitions beyond the Landau-Ginzburg paradigm and supersymmetry, Annals Phys. 325 (2010) 2 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    E. Witten, SL(2, ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  11. [11]

    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N =6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    S. Terashima, On M5-branes in N =6 Membrane Action, JHEP 08 (2008) 080 [arXiv:0807.0197] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    X. Chu, H. Nastase, B.E.W. Nilsson and C. Papageorgakis, Higgsing M2 to D2 with gravity: N =6 chiral supergravity from topologically gauged ABJM theory, JHEP 04 (2011) 040 [arXiv:1012.5969] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    A. Mohammed, J. Murugan and H. Nastase, Towards a Realization of the Condensed-Matter/Gravity Correspondence in String Theory via Consistent Abelian Truncation, Phys. Rev. Lett. 109 (2012) 181601 [arXiv:1205.5833] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    A. Mohammed, J. Murugan and H. Nastase, Abelian-Higgs and Vortices from ABJM: towards a string realization of AdS/CMT, JHEP 11 (2012) 073 [arXiv:1206.7058] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    K. Hosomichi, K.-M. Lee and S. Lee, Mass-Deformed Bagger-Lambert Theory and its BPS Objects, Phys. Rev. D 78 (2008) 066015 [arXiv:0804.2519] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    H. Nastase, C. Papageorgakis and S. Ramgoolam, The fuzzy S 2 structure of M2-M5 systems in ABJM membrane theories, JHEP 05 (2009) 123 [arXiv:0903.3966] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    H. Nastase and C. Papageorgakis, Bifundamental fuzzy 2-sphere and fuzzy Killing spinors, SIGMA 6 (2010) 058 [arXiv:1003.5590] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Shock.

Additional information

ArXiv ePrint: 1404.5926

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murugan, J., Nastase, H., Rughoonauth, N. et al. Particle-vortex and Maxwell duality in the AdS4 × 3/ABJM correspondence. J. High Energ. Phys. 2014, 51 (2014). https://doi.org/10.1007/JHEP10(2014)051

Download citation

Keywords

  • Duality in Gauge Field Theories
  • Solitons Monopoles and Instantons
  • AdS-CFT Correspondence