Mass-deformed brane tilings

  • Massimo Bianchi
  • Stefano Cremonesi
  • Amihay Hanany
  • Jose Francisco Morales
  • Daniel Ricci Pacifici
  • Rak-Kyeong Seong
Open Access


We study renormalization group flows among \( \mathcal{N}=1 \) SCFTs realized on the worldvolume of D3-branes probing toric Calabi-Yau singularities, thus admitting a brane tiling description. The flows are triggered by masses for adjoint or vector-like pairs of bifundamentals and are generalizations of the Klebanov-Witten construction of the \( \mathcal{N}=1 \) theory for the conifold starting from the \( \mathcal{N}=2 \) theory for the ℂ2/ℤ2 orbifold. In order to preserve the toric condition pairs of masses with opposite signs have to be switched on. We offer a geometric interpretation of the flows as complex deformations of the Calabi-Yau singularity preserving the toric condition. For orbifolds, we support this interpretation by an explicit string amplitude computation of the gauge invariant mass terms generated by imaginary self-dual 3-form fluxes in the twisted sector. In agreement with the holographic a-theorem, the volume of the Sasaki-Einstein 5-base of the Calabi-Yau cone always increases along the flow.


Supersymmetric gauge theory D-branes Differential and Algebraic Geometry Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes, JHEP 05 (1998) 001 [hep-th/9801134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  3. [3]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Davey, A. Hanany and R.-K. Seong, Counting orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Davey, A. Hanany and R.-K. Seong, An Introduction to Counting Orbifolds, Fortsch. Phys. 59 (2011) 677 [arXiv:1102.0015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Hanany and R.-K. Seong, Symmetries of Abelian Orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, Calabi-Yau orbifolds and torus coverings, JHEP 09 (2011) 116 [arXiv:1105.3471] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Gubser, N. Nekrasov and S. Shatashvili, Generalized conifolds and 4-dimensional N = 1 superconformal field theory, JHEP 05 (1999) 003 [hep-th/9811230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r, JHEP 04 (2006) 033 [hep-th/0505206] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for L**pqr manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1., Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A.M. Uranga, Brane configurations for branes at conifolds, JHEP 01 (1999) 022 [hep-th/9811004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Dasgupta and S. Mukhi, Brane constructions, conifolds and M-theory, Nucl. Phys. B 551 (1999) 204 [hep-th/9811139] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. von Unge, Branes at generalized conifolds and toric geometry, JHEP 02 (1999) 023 [hep-th/9901091] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: Proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) 5-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Bocklandt, Consistency conditions for dimer models, arXiv:1104.1592 [INSPIRE].
  25. [25]
    N. Broomhead, Dimer models and Calabi-Yau algebras, arXiv:0901.4662 [INSPIRE].
  26. [26]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, UnHiggsing the del Pezzo, JHEP 08 (2003) 058 [hep-th/0209228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Butti, A. Zaffaroni and D. Forcella, Deformations of conformal theories and non-toric quiver gauge theories, JHEP 02 (2007) 081 [hep-th/0607147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Hanany, P. Kazakopoulos and B. Wecht, A new infinite class of quiver gauge theories, JHEP 08 (2005) 054 [hep-th/0503177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Hanany, D. Orlando and S. Reffert, Sublattice counting and orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Hanany and R.-K. Seong, Brane Tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    D. Kutasov, New results on thea theoremin four-dimensional supersymmetric field theory, hep-th/0312098 [INSPIRE].
  37. [37]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Martelli, J. Sparks and S.-T. Yau, The Geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Eager, Equivalence of A-Maximization and Volume Minimization, JHEP 01 (2014) 089 [arXiv:1011.1809] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y. Tachikawa and B. Wecht, Explanation of the Central Charge Ratio 27/32 in Four-Dimensional Renormalization Group Flows between Superconformal Theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    N. Halmagyi, K. Pilch, C. Romelsberger and N.P. Warner, The Complex geometry of holographic flows of quiver gauge theories, JHEP 09 (2006) 063 [hep-th/0406147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Billó et al., Non-perturbative effective interactions from fluxes, JHEP 12 (2008) 102 [arXiv:0807.4098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T 6 /Z(3) orientifold, JHEP 07 (2007) 038 [arXiv:0704.0784] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Bianchi and E. Kiritsis, Non-perturbative and Flux superpotentials for Type I strings on the Z(3) orbifold, Nucl. Phys. B 782 (2007) 26 [hep-th/0702015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Bianchi, F. Fucito and J.F. Morales, Dynamical supersymmetry breaking from unoriented D-brane instantons, JHEP 08 (2009) 040 [arXiv:0904.2156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Bianchi, G. Inverso, J.F. Morales and D.R. Pacifici, Unoriented Quivers with Flavour, JHEP 01 (2014) 128 [arXiv:1307.0466] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Bianchi and M. Samsonyan, Notes on unoriented D-brane instantons, Int. J. Mod. Phys. A 24 (2009) 5737 [arXiv:0909.2173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Massimo Bianchi
    • 1
  • Stefano Cremonesi
    • 2
  • Amihay Hanany
    • 2
  • Jose Francisco Morales
    • 1
  • Daniel Ricci Pacifici
    • 3
  • Rak-Kyeong Seong
    • 4
  1. 1.Dipartimento di Fisica, Università di Roma “TorVergata” and I.N.F.N., Sezione di Roma “TorVergata”RomaItaly
  2. 2.Theoretical Physics Group, The Blackett LaboratoryImperial College LondonLondonUnited Kingdom
  3. 3.Dipartimento di Fisica e Astronomia, Università degli Studi di Padova and I.N.F.N, Sezione di PadovaPadovaItaly
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea

Personalised recommendations