Compressed SUSY search at the 13 TeV LHC using kinematic correlations and structure of ISR jets

  • Satyanarayan MukhopadhyayEmail author
  • Mihoko M. Nojiri
  • Tsutomu T. Yanagida
Open Access


The LHC search for nearly degenerate gluinos and neutralinos, which can occur, for example, in SUSY axion models, is limited by the reduced missing transverse momentum and effective mass in the events. We propose the use of kinematic correlations between jets coming from initial state radiation (ISR) in gluino pair production events at the 13 TeV LHC. A significant improvement in the signal to background ratio is obtained for the highly compressed gluino-neutralino search, by using cuts on the rapidity and azimuthal angle separation between the pair of tagged jets with the highest transverse momenta. Furthermore, the distribution of the azimuthal angle difference between the tagged jets in the \( \tilde{g}\tilde{g} \) + jets process is found to be distinctly different from the dominant background process of Z + jets. We also find quark and gluon jet tagging methods to be useful in separating the signal, which contains a higher fraction of gluon initiated jets compared to the dominant backgrounds.


Jets Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Nakayama and T.T. Yanagida, Anomaly mediation deformed by axion, Phys. Lett. B 722 (2013) 107 [arXiv:1302.3332] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact supersymmetry, Phys. Rev. D 86 (2012) 115014 [arXiv:1206.4993] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  4. [4]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Alwall, K. Hiramatsu, M.M. Nojiri and Y. Shimizu, Novel reconstruction technique for new physics processes with initial state radiation, Phys. Rev. Lett. 103 (2009) 151802 [arXiv:0905.1201] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].ADSGoogle Scholar
  14. [14]
    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1 fb−1 at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed SUSY at 14 TeV LHC, Phys. Rev. D 89 (2014) 037702 [arXiv:1308.1526] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Jung and J.D. Wells, Gaugino physics of split supersymmetry spectrum at the LHC and future proton colliders, Phys. Rev. D 89 (2014) 075004 [arXiv:1312.1802] [INSPIRE].ADSGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047, CERN, Geneva Switzerland (2013).
  21. [21]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Hocker et al., TMVAToolkit for MultiVariate data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].
  25. [25]
    P. Speckmayer, A. Hocker, J. Stelzer and H. Voss, The toolkit for multivariate data analysis, TMVA 4, J. Phys. Conf. Ser. 219 (2010) 032057 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    TMVAToolkit for Multivariate Data Analysis with ROOT webpage,
  27. [27]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric Standard Model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    R. Field, Early LHC underlying event datafindings and surprises, arXiv:1010.3558 [INSPIRE].
  37. [37]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  39. [39]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  40. [40]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  41. [41]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  42. [42]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B. Di Girolamo and L. Neukermans, Observing an invisibly decaying Higgs boson in ATLAS via vector boson fusion, CERN-ATL-PHYS-2003-006, CERN, Geneva Switzerland (2002) [INSPIRE].
  47. [47]
    Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V. Hankele, G. Klamke and D. Zeppenfeld, Higgs + 2 jets as a probe for CP properties, hep-ph/0605117 [INSPIRE].
  53. [53]
    A. Datta, P. Konar and B. Mukhopadhyaya, Invisible charginos and neutralinos from gauge boson fusion: a way to explore anomaly mediation?, Phys. Rev. Lett. 88 (2002) 181802 [hep-ph/0111012] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    V. Del Duca et al., Monte Carlo studies of the jet activity in Higgs + 2 jet events, JHEP 10 (2006) 016 [hep-ph/0608158] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.R. Buckley and M.J. Ramsey-Musolf, Diagnosing spin at the LHC via vector boson fusion, JHEP 09 (2011) 094 [arXiv:1008.5151] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    H. Murayama and V. Rentala, Randall-Sundrum graviton spin determination using azimuthal angular dependence, Phys. Rev. D 85 (2012) 095005 [arXiv:0904.4561] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Frank, M. Rauch and D. Zeppenfeld, Spin-2 resonances in vector-boson-fusion processes at NLO QCD, Phys. Rev. D 87 (2013) 055020 [arXiv:1211.3658] [INSPIRE].ADSGoogle Scholar
  60. [60]
    C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs quantum numbers in weak boson fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.R. Buckley, T. Plehn and M.J. Ramsey-Musolf, Stop on top, Phys. Rev. D 90 (2014) 014046 [arXiv:1403.2726] [INSPIRE].ADSGoogle Scholar
  62. [62]
    K. Hagiwara and S. Mukhopadhyay, Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC, JHEP 05 (2013) 019 [arXiv:1302.0960] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Satyanarayan Mukhopadhyay
    • 1
    Email author
  • Mihoko M. Nojiri
    • 1
    • 2
  • Tsutomu T. Yanagida
    • 1
  1. 1.Kavli IPMU (WPI)The University of TokyoKashiwaJapan
  2. 2.KEK Theory Center and SokendaiTsukubaJapan

Personalised recommendations