Journal of High Energy Physics

, 2013:214 | Cite as

The cosmophenomenology of axionic dark radiation

Article

Abstract

Relativistic axions are good candidates for the dark radiation for which there are mounting observational hints. The primordial decays of heavy fields produce axions which are ultra-energetic compared to thermalised matter and inelastic axion-matter scattering can occur with ECoMTγ, thus accessing many interesting processes which are otherwise kinematically forbidden in standard cosmology. Axion-photon scattering into quarks and leptons during BBN affects the light element abundances, and bounds on over-production of 4He constrain a combination of the axion decay constant and the reheating temperature. For supersymmetric models, axion scattering into visible sector superpartners can give direct non-thermal production of dark matter at TγTfreezeout. Most axions — or any other dark radiation candidate from modulus decay — still linger today as a Cosmic Axion Background with Eaxion ~ \( \mathcal{O} \)(100) eV, and a flux of ~ 106 cm−2 s−1.

Keywords

Cosmology of Theories beyond the SM Supersymmetric Effective Theories 

References

  1. [1]
    A.G. Riess et al., A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730 (2011) 119 [Erratum ibid. 732 (2011)129] [arXiv:1103.2976] [INSPIRE].
  2. [2]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Z. Hou et al., Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey, arXiv:1212.6267 [INSPIRE].
  4. [4]
    J.L. Sievers et al., The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data, arXiv:1301.0824 [INSPIRE].
  5. [5]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  6. [6]
    W.L. Freedman et al., Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, Astrophys. J. 758 (2012) 24 [arXiv:1208.3281] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Suyu et al., Two accurate time-delay distances from strong lensing: Implications for cosmology, Astrophys. J. 766 (2013) 70 [arXiv:1208.6010] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Graf and F.D. Steffen, Thermal axion production in the primordial quark-gluon plasma, Phys. Rev. D 83 (2011) 075011 [arXiv:1008.4528] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Nakayama, F. Takahashi and T.T. Yanagida, A theory of extra radiation in the Universe, Phys. Lett. B 697 (2011) 275 [arXiv:1010.5693] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Fischler and J. Meyers, Dark Radiation Emerging After Big Bang Nucleosynthesis?, Phys. Rev. D 83 (2011) 063520 [arXiv:1011.3501] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Hasenkamp, Dark radiation from the axino solution of the gravitino problem, Phys. Lett. B 707 (2012) 121 [arXiv:1107.4319] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.L. Menestrina and R.J. Scherrer, Dark Radiation from Particle Decays during Big Bang Nucleosynthesis, Phys. Rev. D 85 (2012) 047301 [arXiv:1111.0605] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Kobayashi, F. Takahashi, T. Takahashi and M. Yamaguchi, Dark radiation from modulated reheating, JCAP 03 (2012) 036 [arXiv:1111.1336] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K.S. Jeong and F. Takahashi, Light Higgsino from axion dark radiation, JHEP 08 (2012) 017 [arXiv:1201.4816] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, Dark radiation in extended cosmological scenarios, Phys. Rev. D 86 (2012) 043509 [arXiv:1206.0109] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Boehm, M.J. Dolan and C. McCabe, Increasing N ef f with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].Google Scholar
  19. [19]
    T. Higaki, K. Kamada and F. Takahashi, Higgs, moduli problem, baryogenesis and large volume compactifications, JHEP 09 (2012) 043 [arXiv:1207.2771] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Graf and F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures, JCAP 02 (2013) 018 [arXiv:1208.2951] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark Radiation in LARGE Volume Models, Phys. Rev. D 87 (2013), no. 4 043520 [arXiv:1208.3562] [INSPIRE].
  23. [23]
    T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Hasenkamp and J. Kersten, Dark radiation from particle decay: cosmological constraints and opportunities, JCAP 08 (2013) 024 [arXiv:1212.4160] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K.J. Bae, H. Baer and A. Lessa, Dark radiation constraints on mixed axion/neutralino dark matter, JCAP 04 (2013) 041 [arXiv:1301.7428] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.S. Jeong and F. Takahashi, Axionic co-genesis of baryon, dark matter and dark radiation, JHEP 04 (2013) 121 [arXiv:1302.1486] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Graf and F.D. Steffen, Dark radiation and dark matter in supersymmetric axion models with high reheating temperature, arXiv:1302.2143 [INSPIRE].
  28. [28]
    T. Higaki, K.S. Jeong and F. Takahashi, A parallel world in the dark, JCAP 08 (2013) 031 [arXiv:1302.2516] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Archidiacono, E. Giusarma, A. Melchiorri and O. Mena, Neutrino and Dark Radiation properties in light of latest CMB observations, Phys. Rev. D 87 (2013) 103519 [arXiv:1303.0143] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Brust, D.E. Kaplan and M.T. Walters, New light species and the CMB, arXiv:1303.5379 [INSPIRE].
  31. [31]
    C. Boehm, M.J. Dolan and C. McCabe, A lower bound on the mass of cold thermal dark matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    B.S. Acharya et al., Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    J.R. Ellis, G. Gelmini, J.L. Lopez, D.V. Nanopoulos and S. Sarkar, Astrophysical constraints on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G. Starkman, Limits on late decaying particles from nucleosynthesis, Nucl. Phys. B 311 (1989) 699 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
  40. [40]
    G. Steigman, Primordial helium and the cosmic background radiation, JCAP 04 (2010) 029 [arXiv:1002.3604] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y. Izotov and T. Thuan, The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in helium abundance determinations, JCAP 05 (2010) 003 [arXiv:1001.5218] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E. Aver, K.A. Olive and E.D. Skillman, An MCMC determination of the primordial helium abundance, JCAP 04 (2012) 004 [arXiv:1112.3713] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago University Press, Chicago U.S.A. (1996), pg. 664.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Rudolf Peierls Center for Theoretical PhysicsOxfordU.K.

Personalised recommendations