Journal of High Energy Physics

, 2013:199 | Cite as

Heterotic moduli stabilisation

Open Access
Article

Abstract

We perform a systematic analysis of moduli stabilisation for weakly coupled heterotic string theory compactified on internal manifolds which are smooth Calabi-Yau three-folds up to α effects. We first review how to stabilise all the geometric and gauge bundle moduli in a supersymmetric way by including fractional fluxes, the requirement of a holomorphic gauge bundle, D-terms, higher order perturbative contributions to the superpotential as well as non-perturbative and threshold effects. We then show that the inclusion of α corrections to the Kähler potential leads to new stable Minkowski (or de Sitter) vacua where the complex structure moduli and the dilaton are fixed supersymmetrically at leading order, while the stabilisation of the Kähler moduli at a lower scale leads to spontaneous breaking supersymmetry. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. We also provide a dynamical derivation of anisotropic compactifications with stabilised moduli which allow for perturbative gauge coupling unification around 1016 GeV. The value of the gravitino mass can be anywhere between the GUT and the TeV scale depending on the stabilisation of the complex structure moduli. In general, these are fixed by turning on background fluxes, leading to a gravitino mass around the GUT scale since the heterotic three-form flux does not contain enough freedom to tune the superpotential to small values. Moreover accommodating the observed value of the cosmological constant is a challenge. Low-energy supersymmetry could instead be obtained by focusing on particular Calabi-Yau constructions where the gauge bundle is holomorphic only at a point-like sub-locus of complex structure moduli space, or situations with a small number of complex structure moduli (like orbifold models), since in these cases one may fix all the moduli without turning on any quantised background flux. However obtaining the right value of the cosmological constant is even more of a challenge in these cases. Another option would be to focus on compactifications on non-complex manifolds, since these allow for new geometric fluxes which could be used to tune the superpotential as well as the cosmological constant, even if the moduli space of these manifolds is presently only poorly understood.

Keywords

Flux compactifications dS vacua in string theory Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric Standard Model from the Heterotic String (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Lebedev et al., A Mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Lebedev et al., The Heterotic Road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].ADSGoogle Scholar
  8. [8]
    O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B. Dundee, S. Raby and A. Westphal, Moduli stabilization and SUSY breaking in heterotic orbifold string models, Phys. Rev. D 82 (2010) 126002 [arXiv:1002.1081] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, On Moduli Stabilisation and de Sitter Vacua in MSSM Heterotic Orbifolds, JHEP 01 (2011) 071 [arXiv:1009.3931] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Supersymmetry Breaking From Duality Invariant Gaugino Condensation, Phys. Lett. B 245 (1990) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Ferrara, N. Magnoli, T. Taylor and G. Veneziano, Duality and supersymmetry breaking in string theory, Phys. Lett. B 245 (1990) 409 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    H.P. Nilles and M. Olechowski, Gaugino Condensation and Duality Invariance, Phys. Lett. B 248 (1990) 268 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Casas, Z. Lalak, C. Muñoz and G.G. Ross, Hierarchical Supersymmetry Breaking and Dynamical Determination of Compactification Parameters by Nonperturbative Effects, Nucl. Phys. B 347 (1990) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. de Carlos, J. Casas and C. Muñoz, Supersymmetry breaking and determination of the unification gauge coupling constant in string theories, Nucl. Phys. B 399 (1993) 623 [hep-th/9204012] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Gallego and M. Serone, Moduli Stabilization in non-Supersymmetric Minkowski Vacua with Anomalous U(1) Symmetry, JHEP 08 (2008) 025 [arXiv:0807.0190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S. Gukov, S. Kachru, X. Liu and L. McAllister, Heterotic moduli stabilization with fractional Chern-Simons invariants, Phys. Rev. D 69 (2004) 086008 [hep-th/0310159] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    R. Brustein and S.P. de Alwis, Moduli potentials in string compactifications with fluxes: Mapping the discretuum, Phys. Rev. D 69 (2004) 126006 [hep-th/0402088] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Curio, A. Krause and D. Lüst, Moduli stabilization in the heterotic/ IIB discretuum, Fortsch. Phys. 54 (2006) 225 [hep-th/0502168] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    L. Anguelova, C. Quigley and S. Sethi, The Leading Quantum Corrections to Stringy Kähler Potentials, JHEP 10 (2010) 065 [arXiv:1007.4793] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Hebecker and M. Trapletti, Gauge unification in highly anisotropic string compactifications, Nucl. Phys. B 713 (2005) 173 [hep-th/0411131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    B. Dundee, S. Raby and A. Wingerter, Reconciling Grand Unification with Strings by Anisotropic Compactifications, Phys. Rev. D 78 (2008) 066006 [arXiv:0805.4186] [INSPIRE].ADSGoogle Scholar
  30. [30]
    W. Buchmüller, C. Lüdeling and J. Schmidt, Local SU(5) Unification from the Heterotic String, JHEP 09 (2007) 113 [arXiv:0707.1651] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Loaiza-Brito, J. Martin, H.P. Nilles and M. Ratz, Log(M(Pl) / m(3/2)), AIP Conf. Proc. 805 (2006) 198 [hep-th/0509158] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Kappl et al., Large hierarchies from approximate R symmetries, Phys. Rev. Lett. 102 (2009) 121602 [arXiv:0812.2120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].ADSGoogle Scholar
  35. [35]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE].
  38. [38]
    R. Donagi and M. Wijnholt, Model Building with F-Theory, Adv. Theor. Math. Phys. 15 (2011)1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    G. Lopes Cardoso et al., NonKähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, Properties of heterotic vacua from superpotentials, Nucl. Phys. B 666 (2003) 144 [hep-th/0304001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on nonKähler complex manifolds. 1., JHEP 04 (2003) 007 [hep-th/0301161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    E. Witten, Dimensional Reduction of Superstring Models, Phys. Lett. B 155 (1985) 151 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    S. Ferrara, C. Kounnas and M. Porrati, General Dimensional Reduction of Ten-Dimensional Supergravity and Superstring, Phys. Lett. B 181 (1986) 263 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B.R. Greene and M. Plesser, Duality in Calabi-Yau Moduli Space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    P. Candelas, X. de la Ossa and F. Rodriguez-Villegas, Calabi-Yau manifolds over finite fields. 1., hep-th/0012233 [INSPIRE].
  55. [55]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    L. Anguelova and C. Quigley, Quantum Corrections to Heterotic Moduli Potentials, JHEP 02 (2011) 113 [arXiv:1007.5047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY Breaking Terms for Chiral Matter in IIB String Compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M. Cicoli, C. Burgess and F. Quevedo, Anisotropic Modulus Stabilisation: Strings at LHC Scales with Micron-sized Extra Dimensions, JHEP 10 (2011) 119 [arXiv:1105.2107] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    S. Angus and J.P. Conlon, Soft Supersymmetry Breaking in Anisotropic LARGE Volume Compactifications, JHEP 03 (2013) 071 [arXiv:1211.6927] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Cicoli, C. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed AstronomiaUniversità di BolognaBolognaItaly
  2. 2.INFN, Sezione di BolognaBolognaItaly
  3. 3.Adbus Salam ICTPTriesteItaly
  4. 4.UCB 390 Physics Dept.University of ColoradoBoulderU.S.A.
  5. 5.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany

Personalised recommendations