Advertisement

Journal of High Energy Physics

, 2013:185 | Cite as

On higher spin symmetries in AdS 5

  • R. Manvelyan
  • K. Mkrtchyan
  • R. Mkrtchyan
  • S. TheisenEmail author
Article

Abstract

A special embedding of the SU(4) algebra in SU(10), including both spin two and spin three symmetry generators, is constructed. A possible five dimensional action for massless spin two and three fields with cubic interaction is constructed. The connection with the previously investigated higher spin theories in AdS 5 background is discussed. Generalization to the more general case of symmetries, including spins 2, 3, . . . s, is shown.

Keywords

Gauge Symmetry Field Theories in Higher Dimensions Space-Time Symmetries 

References

  1. [1]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Henneaux and S.-J. Rey, Nonlinear W infty as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2+1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff, M. Blencowe and K. Stelle, Area Preserving Diffeomorphisms And Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. [11]
    M.A. Vasiliev, Higher Spin Algebras and Quantization on the Sphere and Hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S.F. Prokushkin, A.Y. Segal and M.A. Vasiliev, Coordinate free action for AdS 3 higher spin matter systems, Phys. Lett. B 478 (2000) 333 [hep-th/9912280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Boulanger and E. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200] [INSPIRE].
  17. [17]
    M. Vasiliev, Cubic Vertices for Symmetric Higher-Spin Gauge Fields in (A)dS d, Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A.H. Chamseddine, Topological Gauge Theory of Gravity in Five-dimensions and All Odd Dimensions, Phys. Lett. B 233 (1989) 291 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A.H. Chamseddine, Topological gravity and supergravity in various dimensions, Nucl. Phys. B 346 (1990) 213 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Engquist and O. Hohm, Higher-spin Chern-Simons theories in odd dimensions, Nucl. Phys. B 786 (2007) 1 [arXiv:0705.3714] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  22. [22]
    K. Stelle and P.C. West, Spontaneously Broken de Sitter Symmetry and the Gravitational Holonomy Group, Phys. Rev. D 21 (1980) 1466 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    E. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    E. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Lopatin and M.A. Vasiliev, Free Massless Bosonic Fields of Arbitrary Spin in d-dimensional de Sitter Space, Mod. Phys. Lett. A 3 (1988) 257 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  27. [27]
    E.S. Fradkin and V. Ya. Linetsky, Conformal Superalgebras of Higher Spins, Mod. Phys. Lett. A 4 (1989) 2363 [Ann. Phys. 198 (1990) 252] [INSPIRE].
  28. [28]
    E. Sezgin and P. Sundell, Doubletons and 5-D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions, arXiv:0807.0406 [INSPIRE].
  33. [33]
    N. Boulanger, D. Ponomarev, E. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, arXiv:1305.5180 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • R. Manvelyan
    • 1
  • K. Mkrtchyan
    • 2
  • R. Mkrtchyan
    • 1
  • S. Theisen
    • 3
    Email author
  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Scuola Normale Superiore and INFNPisaItaly
  3. 3.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations