Journal of High Energy Physics

, 2013:158 | Cite as

Two-component dark matter

  • Subhadittya Bhattacharya
  • Aleksandra Drozd
  • Bohdan Grzadkowski
  • Jose Wudka
Open Access
Article

Abstract

We study an extension of the Standard Model (SM) with two interacting cold Dark Matter (DM) candidates: a neutral Majorana fermion (ν) and a neutral scalar singlet (φ). The scalar φ interacts with the SM through the “Higgs portal” coupling while ν at the tree level interacts only with φ through Yukawa interactions. The relic abundance of ν and φ is found by solving the Boltzmann equations numerically; for the case mν > mφ we also derive a reliable approximate analytical solution. Effects of the interaction between the two DM components are discussed. A scan over the parameter space is performed to determine the regions consistent with the WMAP data for DM relic abundance, and with the XENON100 direct detection limits for the DM-nucleus cross section. We find that although a large region of the parameter space is allowed by the WMAP constraints, the XENON100 data severely restricts the parameter space. Taking into account only amplitudes generated at the tree level one finds three allowed regions for the scalar mass: mφ ~ 62.5 GeV (corresponding to the vicinity of the Higgs boson resonance responsible for φφ annihilation into SM particles), mφ ≃ 130 − 140 GeV and mφ ≳ 3 TeV. 1-loop induced ν-nucleon scattering has been also calculated and discussed. A possibility of DM direct detection by the CREST-II experiment was considered.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

References

  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Bertone, Particle Dark Matter, Cambridge University Press, Cambridge U.K. (2010).CrossRefMATHGoogle Scholar
  3. [3]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.R. Blumenthal, S. Faber, J.R. Primack and M.J. Rees, Formation of Galaxies and Large Scale Structure with Cold Dark Matter, Nature 311 (1984) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Klypin, J. Holtzman, J. Primack and E. Regos, Structure formation with cold plus hot dark matter, Astrophys. J. 416 (1993) 1 [astro-ph/9305011] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W. Hu, Structure formation with generalized dark matter, Astrophys. J. 506 (1998) 485 [astro-ph/9801234] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.G. Abadi, J.F. Navarro, M. Steinmetz and V.R. Eke, Simulations of galaxy formation in a lambda CDM universe. 2. The fine structure of simulated galactic disks, Astrophys. J. 597 (2003) 21 [astro-ph/0212282] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Bergstrom, Nonbaryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Profumo, K. Sigurdson and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016 [arXiv:0907.4374] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.B. Gelmini, Dark matter searches: Looking for the cake or its frosting? Detectability of a subdominant component of the CDM, Nucl. Phys. Proc. Suppl. 138 (2005) 32 [hep-ph/0310022] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Duda, G. Gelmini, P. Gondolo, J. Edsjo and J. Silk, Indirect detection of a subdominant density component of cold dark matter, Phys. Rev. D 67 (2003) 023505 [hep-ph/0209266] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Duda, G. Gelmini and P. Gondolo, Detection of a subdominant density component of cold dark matter, Phys. Lett. B 529 (2002) 187 [hep-ph/0102200] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Drozd, B. Grzadkowski and J. Wudka, Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Q.-H. Cao, E. Ma, J. Wudka and C.-P. Yuan, Multipartite dark matter, arXiv:0711.3881 [INSPIRE].
  16. [16]
    D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Heeck and H. Zhang, Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos, JHEP 05 (2013) 164 [arXiv:1211.0538] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].ADSGoogle Scholar
  20. [20]
    Y. Tomozawa, Two components of dark matter in the DAMA data, Int. J. Mod. Phys. A 23 (2008) 4811 [arXiv:0806.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Malekjani, S. Rahvar and D. Jassur, Two Component Baryonic-Dark Matter Structure Formation in Top-Hat Model, New Astron. 14 (2009) 398 [arXiv:0706.3773] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.-H. Huh, J.E. Kim and B. Kyae, Two dark matter components in dark matter extension of the minimal supersymmetric standard model and the high energy positron spectrum in PAMELA/HEAT data, Phys. Rev. D 79 (2009) 063529 [arXiv:0809.2601] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Daikoku, H. Okada and T. Toma, Two Component Dark Matters in S 4 × Z 2 Flavor Symmetric Extra U(1) Model, Prog. Theor. Phys. 126 (2011) 855 [arXiv:1106.4717] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    M. Aoki, J. Kubo and H. Takano, Two-loop radiative seesaw with multicomponent dark matter explaining the possible gamma excess in the Higgs boson decay and at the Fermi LAT, Phys. Rev. D 87 (2013) 116001 [arXiv:1302.3936] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Biswas, D. Majumdar, A. Sil and P. Bhattacharjee, Two Component Dark Matter : A Possible Explanation of 130 GeV γRay Line from the Galactic Centre, arXiv:1301.3668 [INSPIRE].
  26. [26]
    P.-H. Gu, Multi-component dark matter with magnetic moments for Fermi-LAT gamma-ray line, Phys. Dark Univ. 2 (2013) 35 [arXiv:1301.4368] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    M. Cirelli and J.M. Cline, Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?, Phys. Rev. D 82 (2010) 023503 [arXiv:1005.1779] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Bian, R. Ding and B. Zhu, Two Component Higgs-Portal Dark Matter, arXiv:1308.3851 [INSPIRE].
  29. [29]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Dark Supersymmetry, Nucl. Phys. B 876 (2013) 201 [arXiv:1305.4182] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z. Berezhiani and M.Y. Khlopov, Physics of cosmological dark matter in the theory of broken family symmetry (In Russian), Sov. J. Nucl. Phys. 52 (1990) 60 [INSPIRE].Google Scholar
  31. [31]
    Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 (2013) 015029 [arXiv:1303.7356] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P.T. Winslow, K. Sigurdson and J.N. Ng, Multi-State Dark Matter from Spherical Extra Dimensions, Phys. Rev. D 82 (2010) 023512 [arXiv:1005.3013] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K.R. Dienes and B. Thomas, Dynamical Dark Matter: I. Theoretical Overview, Phys. Rev. D 85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K.R. Dienes and B. Thomas, Dynamical Dark Matter: II. An Explicit Model, Phys. Rev. D 85 (2012) 083524 [arXiv:1107.0721] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.V. Medvedev, Cosmological Simulations of Multi-Component Cold Dark Matter, arXiv:1305.1307 [INSPIRE].
  36. [36]
    V. Semenov, S. Pilipenko, A. Doroshkevich, V. Lukash and E. Mikheeva, Dark matter halo formation in the multicomponent dark matter models, arXiv:1306.3210 [INSPIRE].
  37. [37]
    A. Kundu and S. Raychaudhuri, Taming the scalar mass problem with a singlet Higgs boson, Phys. Rev. D 53 (1996) 4042 [hep-ph/9410291] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Grzadkowski and J. Wudka, Naive solution of the little hierarchy problem and its physical consequences, Acta Phys. Polon. B 40 (2009) 3007 [arXiv:0910.4829] [INSPIRE].ADSGoogle Scholar
  40. [40]
    I. Chakraborty and A. Kundu, Controlling the fine-tuning problem with singlet scalar dark matter, Phys. Rev. D 87 (2013) 055015 [arXiv:1212.0394] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Drozd, RGE and the Fine-Tuning Problem, arXiv:1202.0195 [INSPIRE].
  42. [42]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Cynolter, E. Lendvai and G. Pocsik, Note on unitarity constraints in a model for a singlet scalar dark matter candidate, Acta Phys. Polon. B 36 (2005) 827 [hep-ph/0410102] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of Relic Densities in the Early Universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Kolb and M. Turner, The Early Universe, Westview Press (1994).Google Scholar
  46. [46]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Angloher et al., Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Bai, P. Draper and J. Shelton, Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    W.-L. Guo and Y.-L. Wu, The Real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Subhadittya Bhattacharya
    • 1
  • Aleksandra Drozd
    • 2
  • Bohdan Grzadkowski
    • 2
  • Jose Wudka
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaRiversideU.S.A.
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations