Journal of High Energy Physics

, 2013:149 | Cite as

WIMP dark matter as radiative neutrino mass messenger

  • M. Hirsch
  • R. A. Lineros
  • S. Morisi
  • J. Palacio
  • N. Rojas
  • J. W. F. Valle


The minimal seesaw extension of the Standard SU(3) c ⊗SU(2) L ⊗U(1) Y Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)L. These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.


Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 


  1. [1]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011)109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Schechter and J. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  4. [4]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  5. [5]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Ma and D. Suematsu, Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.R. Ellis and F. Pauss, Searches for new physics, Adv. Ser. Direct. High Energy Phys. 4 (1989)269 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type-III seesaw mechanism, Phys. Lett. B 718 (2012) 348 [arXiv:1210.1797] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  11. [11]
    J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Gunion, R. Vega and J. Wudka, Higgs triplets in the Standard Model, Phys. Rev. D 42 (1990)1673 [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000)1 [INSPIRE]Google Scholar
  14. [14]
    G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Hirsch, S. Morisi, E. Peinado and J. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Boucenna et al., Phenomenology of dark matter from A 4 flavor symmetry, JHEP 05 (2011)037 [arXiv:1101.2874] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    W. Chao, Dark matter, LFV and neutrino magnetic moment in the radiative seesaw model with triplet fermion, arXiv:1202.6394 [INSPIRE].
  22. [22]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Semenov, LanHEP: a package for automatic generation of Feynman rules in gauge models, hep-ph/9608488 [INSPIRE].
  24. [24]
    A. Semenov, LanHEP: a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Semenov, LanHEP: a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].
  26. [26]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1: a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].
  27. [27]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ATLAS collaboration, Search for type III seesaw model heavy fermions in events with four charged leptons using 5.8 fb−1 of \( \sqrt{s} \) = 8 TeV data with the ATLAS detector, ATLAS-CONF-2013-019, CERN, Geneva Switzerland (2013).
  29. [29]
    CMS collaboration, Search for a Standard-Model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • M. Hirsch
    • 1
  • R. A. Lineros
    • 1
  • S. Morisi
    • 2
  • J. Palacio
    • 1
  • N. Rojas
    • 3
  • J. W. F. Valle
    • 1
  1. 1.AHEP Group, Institut de Física Corpuscular — C.S.I.C./Universitat de ValènciaEdificio Institutos de PaternaValenciaSpain
  2. 2.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  3. 3.Facultad de FísicaPontificia Universidad Católica de ChileSantiago de ChileChile

Personalised recommendations