Advertisement

Journal of High Energy Physics

, 2013:136 | Cite as

Mild-split SUSY with flavor

  • Latif Eliaz
  • Amit Giveon
  • Sven Bjarke Gudnason
  • Eitan Tsuk
Article

Abstract

In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model — like the MSSM — has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10 − 20TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of μ → eγ and, if order one complex phases are assumed, also ϵ K , neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    D.B. Kaplan, M.J. Savage and M.B. Wise, A perturbative calculation of the electromagnetic form-factors of the deuteron, Phys. Rev. C 59 (1999) 617 [nucl-th/9804032] [INSPIRE].ADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  3. [3]
    C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4D constructions of supersymmetric extra dimensions and gaugino mediation, Phys. Rev. D 65 (2002) 015003 [hep-ph/0106044] [INSPIRE].ADSGoogle Scholar
  4. [4]
    H. Cheng, D.E. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation, Phys. Lett. B 515 (2001) 395 [hep-ph/0106098] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Auzzi and A. Giveon, The sparticle spectrum in Minimal gaugino-gauge mediation, JHEP 10 (2010) 088 [arXiv:1009.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Auzzi and A. Giveon, Superpartner spectrum of minimal gaugino-gauge mediation, JHEP 01 (2011) 003 [arXiv:1011.1664] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, On the spectrum of direct gaugino mediation, JHEP 09 (2011) 108 [arXiv:1107.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, A light stop with flavor in natural SUSY, JHEP 01 (2013) 169 [arXiv:1208.6263] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  13. [13]
    N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    D. Green, A. Katz and Z. Komargodski, Direct gaugino mediation, Phys. Rev. Lett. 106 (2011) 061801 [arXiv:1008.2215] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  16. [16]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].
  18. [18]
    T. Gherghetta, G.F. Giudice and A. Riotto, Nucleosynthesis bounds in gauge mediated supersymmetry breaking theories, Phys. Lett. B 446 (1999) 28 [hep-ph/9808401] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    ATLAS collaboration, Search for supersymmetry in events with large missing transverse momentum, jets and at least one tau lepton in 21 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data with the ATLAS detector, ATLAS-CONF-2013-026 (2013).
  22. [22]
    A. Giveon, A. Katz and Z. Komargodski, Uplifted metastable vacua and gauge mediation in SQCD, JHEP 07 (2009) 099 [arXiv:0905.3387] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Auzzi, S. Elitzur and A. Giveon, On uplifted SUSY-breaking vacua and direct mediation in generalized SQCD, JHEP 03 (2010) 094 [arXiv:1001.1234] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Baryakhtar, E. Hardy and J. March-Russell, Axion mediation, JHEP 07 (2013) 096 [arXiv:1301.0829] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2013-035 (2013).
  27. [27]
    P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  29. [29]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  30. [30]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Howe and P. Saraswat, Excess Higgs production in neutralino decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  35. [35]
    D. Marques, Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum, JHEP 03 (2009) 038 [arXiv:0901.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T.T. Dumitrescu, Z. Komargodski, N. Seiberg and D. Shih, General messenger gauge mediation, JHEP 05 (2010) 096 [arXiv:1003.2661] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  38. [38]
    O. Gedalia and G. Perez, TASI 2009 lecturesFlavor physics, arXiv:1005.3106 [INSPIRE].
  39. [39]
    S. Jager, Supersymmetry beyond minimal flavour violation, Eur. Phys. J. C 59 (2009) 497 [arXiv:0808.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonunivers al soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.S. Hagelin, S. Kelley and T. Tanaka, Supersymmetric flavor changing neutral currents: exact amplitudes and phenomenological analysis, Nucl. Phys. B 415 (1994) 293 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Ciuchini et al., ΔM(K) and ϵ(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Contino and I. Scimemi, The supersymmetric flavor problem for heavy first two generation scalars at next-to-leading order, Eur. Phys. J. C 10 (1999) 347 [hep-ph/9809437] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    RBC, UKQCD collaboration, P. Boyle, N. Garron and R. Hudspith, Neutral kaon mixing beyond the standard model with n f = 2 + 1 chiral fermions, Phys. Rev. D 86 (2012) 054028 [arXiv:1206.5737] [INSPIRE].ADSGoogle Scholar
  55. [55]
    ETM collaboration, V. Bertone et al., Kaon mixing beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 1307 (2013) 143] [arXiv:1207.1287] [INSPIRE].
  56. [56]
    M. Misiak, S. Pokorski and J. Rosiek, Supersymmetry and FCNC effects, Adv. Ser. Direct. High Energy Phys. 15 (1998) 795 [hep-ph/9703442] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].
  58. [58]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  59. [59]
    MEG collaboration, J. Adam et al., New constraint on the existence of the mu +e + γ decay, arXiv:1303.0754 [INSPIRE].
  60. [60]
    J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D. Becirevic et al., \( {B_d}\hbox{-}{{\overline{B}}_d} \) mixing and the B dJ/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  64. [64]
    P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Gabbiani and A. Masiero, FCNC in generalized supersymmetric theories, Nucl. Phys. B 322 (1989) 235 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A.M. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
  67. [67]
    T. Moroi and M. Nagai, Probing supersymmetric model with heavy sfermions using leptonic flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    T. Moroi, M. Nagai and T.T. Yanagida, Lepton flavor violations in high-scale SUSY with right-handed neutrinos, arXiv:1305.7357 [INSPIRE].
  69. [69]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X_s}\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Hisano, M. Nagai and P. Paradisi, New two-loop contributions to hadronic EDMs in the MSSM, Phys. Lett. B 642 (2006) 510 [hep-ph/0606322] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: a beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [INSPIRE].ADSGoogle Scholar
  73. [73]
    A.C. Vutha et al., Search for the electric dipole moment of the electron with thorium monoxide, J. Phys. B 43 (2010) 074007 [arXiv:0908.2412] [INSPIRE].ADSGoogle Scholar
  74. [74]
    B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  76. [76]
    M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs LHC in supersymmetric models, arXiv:1303.4256 [INSPIRE].
  77. [77]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336-337] [hep-ph/0012052] [INSPIRE].
  78. [78]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  79. [79]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay, Phys. Lett. B 145 (1984) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    D. Fixsen et al., The cosmic microwave background spectrum from the full COBE FIRAS data set, Astrophys. J. 473 (1996) 576 [astro-ph/9605054] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].ADSGoogle Scholar
  88. [88]
    H. Yuksel and M.D. Kistler, Circumscribing late dark matter decays model independently, Phys. Rev. D 78 (2008) 023502 [arXiv:0711.2906] [INSPIRE].ADSGoogle Scholar
  89. [89]
    J.L. Feng, S. Su and F. Takayama, Supergravity with a gravitino LSP, Phys. Rev. D 70 (2004) 075019 [hep-ph/0404231] [INSPIRE].ADSGoogle Scholar
  90. [90]
    J.R. Ellis, K.A. Olive, Y. Santoso and V.C. Spanos, Gravitino dark matter in the CMSSM, Phys. Lett. B 588 (2004) 7 [hep-ph/0312262] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    L. Boubekeur, K.Y. Choi, R. Ruiz de Austri and O. Vives, The degenerate gravitino scenario, JCAP 04 (2010) 005 [arXiv:1002.0340] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-α constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R.S. de Souza et al., Constraints on warm dark matter models from high-redshift long gamma-ray bursts, Mon. Not. Roy. Astron. Soc. 432 (2013) 3218 [arXiv:1303.5060] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A.V. Maccio, S. Paduroiu, D. Anderhalden, A. Schneider and B. Moore, Cores in warm dark matter haloes: a Catch 22 problem, arXiv:1202.1282 [INSPIRE].
  95. [95]
    X. Kang, A.V. Maccio and A.A. Dutton, The effect of warm dark matter on galaxy properties: constraints from the stellar mass function and the Tully-Fisher relation, Astrophys. J. 767 (2013) 22 [arXiv:1208.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R.E. Angulo, O. Hahn and T. Abel, The warm DM halo mass function below the cut-off scale, arXiv:1304.2406 [INSPIRE].
  97. [97]
    H. de Vega and N. Sanchez, Dark matter in galaxies: the dark matter particle mass is about 2 keV, arXiv:1304.0759 [INSPIRE].
  98. [98]
    N. Menci, F. Fiore and A. Lamastra, The evolution of active galactic nuclei in warm dark matter cosmology, Astrophys. J. 766 (2013) 110 [arXiv:1302.2000] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    D. Shih, Pseudomoduli dark matter, JHEP 09 (2009) 046 [arXiv:0906.3346] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    B. Keren-Zur, L. Mazzucato and Y. Oz, Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors, JHEP 09 (2009) 041 [arXiv:0906.5586] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    S. Dimopoulos, G. Giudice and A. Pomarol, Dark matter in theories of gauge mediated supersymmetry breaking, Phys. Lett. B 389 (1996) 37 [hep-ph/9607225] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    P. Gambino, G. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    R. Auzzi, A. Giveon and S.B. Gudnason, Mediation of supersymmetry breaking in quivers, JHEP 12 (2011) 016 [arXiv:1110.1453] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  104. [104]
    M. McGarrie, General gauge mediation and deconstruction, JHEP 11 (2010) 152 [arXiv:1009.0012] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    M. Sudano, General gaugino mediation, arXiv:1009.2086 [INSPIRE].
  106. [106]
    M. McGarrie and R. Russo, General gauge mediation in 5D, Phys. Rev. D 82 (2010) 035001 [arXiv:1004.3305] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Latif Eliaz
    • 1
  • Amit Giveon
    • 1
  • Sven Bjarke Gudnason
    • 1
  • Eitan Tsuk
    • 1
  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations