Journal of High Energy Physics

, 2013:122 | Cite as

Stop and sbottom search using dileptonic MT2 variable and boosted top technique at the LHC

  • Amit Chakraborty
  • Dilip Kumar Ghosh
  • Diptimoy Ghosh
  • Dipan Sengupta
Article

Abstract

The ATLAS and CMS experiments at the CERN LHC have collected about 25 fb−1 of data each at the end of their 8 TeV run, and ruled out a huge swath of parameter space in the context of Minimally Supersymmetric Standard Model (MSSM). Limits on masses of the gluino \( \left( {\widetilde{g}} \right) \) and the squarks of the first two generations \( \left( {\widetilde{q}} \right) \) have been pushed to above 1 TeV. Light third generation squarks namely stop and sbottom of sub-TeV masses, on the other hand, are still allowed by their direct search limits. Interestingly, the discovery of a Standard Model (SM) higgs boson like particle with a mass of ~ 125 GeV favours a light third generation which is also motivated by naturalness arguments. Decays of stop and sbottom quarks can in general produce a number of distinct final states which necessitate different search strategies in the collider experiments. In this paper we, on the other hand, propose a general search strategy to look for third generation squarks in the final state which contains a top quark in the sample along with two additional hard leptons and substantial missing transverse momentum. We illustrate that a search strategy using the dileptonic MT2, the effective mass meff and jet substructure to reconstruct the hadronic top quark can be very effective to reduce the SM backgrounds. With the proposed search strategy, we estimate that the third generation squarks with masses up to about 900 GeV can be probed at the 14 TeV LHC with 100 fb−1 luminosity. We also interpret our results in two simplified scenarios where we consider the stop (sbottom) pair production followed by their subsequent decay to a top quark and the second lightest neutralino (lightest chargino). In this case also we find that stop (sbottom) mass up to 1 TeV (0.9 TeV) can be discovered at the 14 TeV LHC with 100 fb−1 integrated luminosity.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].
  2. [2]
    CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.L. Feng, K.T. Matchev and D. Sanford, Focus Point Supersymmetry Redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Ellis and K.A. Olive, Revisiting the Higgs Mass and Dark Matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Maiani, A. Polosa and V. Riquer, Probing Minimal Supersymmetry at the LHC with the Higgs Boson Masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos and C. Tong, Electroweak Supersymmetry around the Electroweak Scale, Eur. Phys. J. C 73 (2013) 2322 [arXiv:1202.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, arXiv:1205.1568 [INSPIRE].
  20. [20]
    J.L. Feng and D. Sanford, A natural 125 GeV Higgs Boson in the MSSM from Focus Point Supersymmetry with A-Terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. Ghosh, M. Guchait, S. Raychaudhuri and D. Sengupta, How Constrained is the cMSSM?, Phys. Rev. D 86 (2012) 055007 [arXiv:1205.2283] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV, Phys. Rev. D 86 (2012) 095003 [arXiv:1206.5028] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs Sector and Fine-Tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs Boson Discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Nath, SUGRA Grand Unification, LHC and Dark Matter, arXiv:1207.5501 [INSPIRE].
  29. [29]
    J. Ellis, F. Luo, K.A. Olive and P. Sandick, The Higgs Mass beyond the CMSSM, Eur. Phys. J. C 73 (2013) 2403 [arXiv:1212.4476] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Chakraborti, U. Chattopadhyay and R.M. Godbole, Implication of a Higgs boson at 125 GeV within the stochastic superspace framework, Phys. Rev. D 87 (2013), no. 3 035022 [arXiv:1211.1549] [INSPIRE].
  31. [31]
    A. Chakraborty et al., The 125 GeV Higgs signal at the LHC in the CP-violating MSSM, arXiv:1301.2745 [INSPIRE].
  32. [32]
    V.E. Mayes, SUSY into Darkness: Heavy Scalars in the CMSSM, Int. J. Mod. Phys. A 28 (2013) 1350061 [arXiv:1302.4394] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Dighe, D. Ghosh, K.M. Patel and S. Raychaudhuri, Testing Times for Supersymmetry: Looking Under the Lamp Post, arXiv:1303.0721 [INSPIRE].
  34. [34]
    D. Ghosh, M. Guchait and D. Sengupta, Higgs Signal in Chargino-Neutralino Production at the LHC, Eur. Phys. J. C 72 (2012) 2141 [arXiv:1202.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Byakti and D. Ghosh, Magic Messengers in Gauge Mediation and signal for 125 GeV boosted Higgs boson, Phys. Rev. D 86 (2012) 095027 [arXiv:1204.0415] [INSPIRE].ADSGoogle Scholar
  37. [37]
    R.M. Chatterjee, M. Guchait and D. Sengupta, Probing Supersymmetry using Event Shape variables at 8 TeV LHC, Phys. Rev. D 86 (2012) 075014 [arXiv:1206.5770] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].ADSGoogle Scholar
  39. [39]
    K. Howe and P. Saraswat, Excess Higgs production in neutralino decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Ghosh and D. Sengupta, Searching the sbottom in the four lepton channel at the LHC, Eur. Phys. J. C 73 (2013) 2342 [arXiv:1209.4310] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an Invisible Higgs Signal at the LHC, Phys. Lett. B 725 (2013) 344 [arXiv:1211.7015] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Arbey, M. Battaglia and F. Mahmoudi, Higgs Production in Neutralino Decays in the MSSMThe LHC and a Future e + e Collider, arXiv:1212.6865 [INSPIRE].
  43. [43]
    B. Bhattacherjee, A. Chakraborty, D. Kumar Ghosh and S. Raychaudhuri, Using Jet Substructure at the LHC to Search for the Light Higgs Bosons of the CP-Violating MSSM, Phys. Rev. D 86 (2012) 075012 [arXiv:1204.3369] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Ghosh, Boosted di-boson from a mixed heavy stop, arXiv:1308.0320 [INSPIRE].
  45. [45]
    G. Bélanger, D. Ghosh, R. Godbole, M. Guchait and D. Sengupta, Probing the flavor violating scalar top quark signal at the LHC, arXiv:1308.6484 [INSPIRE].
  46. [46]
    J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing natural SUSY from stop pair production at the LHC, JHEP 11 (2012) 039 [arXiv:1206.3865] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L. Randall and M. Reece, Single-scale natural SUSY, JHEP 08 (2013) 088 [arXiv:1206.6540] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    CMS collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005 (2012).
  51. [51]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).
  52. [52]
    ATLAS collaboration, Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets and at Least One Tau Lepton in 21 fb −1 of \( \sqrt{s}=8 \) TeV Proton-Proton Collision Data with the ATLAS Detector, ATLAS-CONF-2013-026 (2013).
  53. [53]
    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in 21 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-036 (2013).
  54. [54]
    CMS collaboration, Search for RPV SUSY in the four-lepton final state, CMS-PAS-SUS-13-010 (2013).
  55. [55]
    CMS collaboration, Search for light stop RPV supersymmetry with three or more leptons and b-tags, CMS-PAS-SUS-13-003 (2013).
  56. [56]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    B. He, T. Li and Q. Shafi, Impact of LHC Searches on NLSP Top Squark and Gluino Mass, JHEP 05 (2012) 148 [arXiv:1112.4461] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Drees, M. Hanussek and J.S. Kim, Light Stop Searches at the LHC with Monojet Events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].ADSGoogle Scholar
  59. [59]
    T. Plehn, M. Spannowsky and M. Takeuchi, Stop searches in 2012, JHEP 08 (2012) 091 [arXiv:1205.2696] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) stop signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    V. Barger, P. Huang, M. Ishida and W.-Y. Keung, Scalar-Top Masses from SUSY Loops with 125 GeV mh and Precise Mw, Phys. Lett. B 718 (2013) 1024 [arXiv:1206.1777] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Choudhury and A. Datta, New limits on top squark NLSP from LHC 4.7 fb −1 data, Mod. Phys. Lett. A 27 (2012) 1250188 [arXiv:1207.1846] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C.-Y. Chen, A. Freitas, T. Han and K.S. Lee, New physics from the top at the LHC, JHEP 11 (2012) 124 [arXiv:1207.4794] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Bornhauser, M. Drees, S. Grab and J. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Kraml and A. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [INSPIRE].ADSGoogle Scholar
  66. [66]
    Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Detecting light stop pairs in coannihilation scenarios at the LHC, Phys. Rev. D 87 (2013) 055007 [arXiv:1211.2997] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M.A. Ajaib, T. Li and Q. Shafi, Stop-Neutralino Coannihilation in the Light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].ADSGoogle Scholar
  68. [68]
    K. Ghosh et al., Top jets as a probe of degenerate stop-NLSP LSP scenario in the framework of CMSSM, Phys. Rev. Lett. 110 (2013) 141801 [arXiv:1207.2429] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    B. Dutta, T. Kamon, N. Kolev, K. Sinha and K. Wang, Searching for Top Squarks at the LHC in Fully Hadronic Final State, Phys. Rev. D 86 (2012) 075004 [arXiv:1207.1873] [INSPIRE].ADSGoogle Scholar
  70. [70]
    D.S. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and Open image in new window : The shape of things to come, Phys. Rev. D 87 (2013), no. 3 035016 [arXiv:1205.5805] [INSPIRE].
  71. [71]
    D. Berenstein, T. Liu and E. Perkins, Multiple b-jets reveal natural SUSY and the 125 GeV Higgs, arXiv:1211.4288 [INSPIRE].
  72. [72]
    C. Kilic and B. Tweedie, Cornering light stops with dileptonic mT2, JHEP 04 (2013) 110 [arXiv:1211.6106] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Adeel Ajaib, T. Li and Q. Shafi, Searching for NLSP Sbottom at the LHC, Phys. Lett. B 701 (2011) 255 [arXiv:1104.0251] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H.M. Lee, V. Sanz and M. Trott, Hitting sbottom in natural SUSY, JHEP 05 (2012) 139 [arXiv:1204.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E. Alvarez and Y. Bai, Reach the bottom line of the sbottom search, JHEP 08 (2012) 003 [arXiv:1204.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs Boson Production and Decay: Effects from Light Third Generation and Vectorlike Matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].ADSGoogle Scholar
  77. [77]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    D.E. Kaplan, K. Rehermann and D. Stolarski, Searching for direct stop production in hadronic top data at the LHC, JHEP 07 (2012) 119 [arXiv:1205.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Berger, M. Perelstein, M. Saelim and A. Spray, Boosted Tops from Gluino Decays, arXiv:1111.6594 [INSPIRE].
  80. [80]
    P. Bandyopadhyay and B. Bhattacherjee, Boosted top quarks in supersymmetric cascade decays at the LHC, Phys. Rev. D 84 (2011) 035020 [arXiv:1012.5289] [INSPIRE].ADSGoogle Scholar
  81. [81]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for direct stop production in events with missing transverse momentum and two b-jets using 12.8 f b −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-001 (2013).
  83. [83]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8,TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  84. [84]
    ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053 (2013).
  85. [85]
    ATLAS collaboration, Search for direct top squark pair production in final states with two leptons in \( \sqrt{s}=8 \) TeV pp collisions using 20 f b −1 of ATLAS data, ATLAS-CONF-2013-048 (2013).
  86. [86]
    ATLAS collaboration, Search for direct stop pair production in events with a Z boson, b-jets and missing transverse energy with the ATLAS detector using 21 fb −1 from proton-proton collision at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-025 (2013).
  87. [87]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 720 (2013) 13 [arXiv:1209.2102] [INSPIRE].ADSGoogle Scholar
  88. [88]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].ADSGoogle Scholar
  89. [89]
    ATLAS collaboration, Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC, JHEP 11 (2012) 094 [arXiv:1209.4186] [INSPIRE].ADSGoogle Scholar
  90. [90]
    CMS collaboration, Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV, CMS-PAS-SUS-13-011 (2013).
  91. [91]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with three leptons and at least one b-tagged jet, CMS-PAS-SUS-13-008 (2013).
  92. [92]
    M.L. Graesser and J. Shelton, Hunting Asymmetric Stops, Phys. Rev. Lett. 111 (2013) 121802 [arXiv:1212.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    B. Dutta et al., Top Squark Searches Using Dilepton Invariant Mass Distributions and Bino-Higgsino Dark Matter at the LHC, Phys. Rev. D 87 (2013) 095007 [arXiv:1302.3231] [INSPIRE].ADSGoogle Scholar
  94. [94]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2012-154 (2012).
  95. [95]
    CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022 (Search for direct EWK production of SUSY particles in multilepton modes with 8TeV data).
  96. [96]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
  97. [97]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  98. [98]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  99. [99]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  100. [100]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. Campbell, R.K. Ellis and R. Rontsch, Single top production in association with a Z boson at the LHC, Phys. Rev. D 87 (2013) 114006 [arXiv:1302.3856] [INSPIRE].ADSGoogle Scholar
  102. [102]
    C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    A.J. Barr and C. Gwenlan, The race for supersymmetry: using m(T2) for discovery, Phys. Rev. D 80 (2009) 074007 [arXiv:0907.2713] [INSPIRE].ADSGoogle Scholar
  105. [105]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  110. [110]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    N. Kidonakis, Top Quark Theoretical Cross Sections and pT and Rapidity Distributions, arXiv:1109.3231 [INSPIRE].
  112. [112]
    A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].ADSGoogle Scholar
  113. [113]
    J.M. Campbell and R.K. Ellis, \( t\overline{t}{W^{+- }} \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  115. [115]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  118. [118]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  119. [119]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Amit Chakraborty
    • 1
  • Dilip Kumar Ghosh
    • 1
  • Diptimoy Ghosh
    • 2
  • Dipan Sengupta
    • 3
  1. 1.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.INFN, Sezione di RomaRomaItaly
  3. 3.Department of High Energy PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations